On some results about convex functions of order
M. Obradović, S. Owa (1986)
Matematički Vesnik
Similarity:
M. Obradović, S. Owa (1986)
Matematički Vesnik
Similarity:
Stefan Müller, Vladimír Šverák (1999)
Journal of the European Mathematical Society
Similarity:
We study solutions of first order partial differential relations , where is a Lipschitz map and is a bounded set in matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of and second we replace Gromov’s −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our...
Wei-Feng Xuan, Yan-Kui Song (2019)
Mathematica Bohemica
Similarity:
We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If is a semi-stratifiable space, then is separable if and only if is ; (2) If is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then is separable; (3) Let be a -monolithic star countable extent semi-stratifiable space. If and , then is hereditarily separable. Finally, we prove that for...
Katsuro Sakai, Zhongqiang Yang (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
Let be the space of all non-empty closed convex sets in Euclidean space ℝ ⁿ endowed with the Fell topology. We prove that for every n > 1 whereas .
Bo’az Klartag (2013)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in . Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of -spaces in for .
Philippe Laurençot (2002)
Colloquium Mathematicae
Similarity:
If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.
Wei-Feng Xuan (2017)
Mathematica Bohemica
Similarity:
A topological space is said to be star Lindelöf if for any open cover of there is a Lindelöf subspace such that . The “extent” of is the supremum of the cardinalities of closed discrete subsets of . We prove that under every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under , which shows that a star Lindelöf, first countable and normal space may not have countable extent.
Vladimir Vladimirovich Tkachuk (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A space is functionally countable if is countable for any continuous function . We will call a space exponentially separable if for any countable family of closed subsets of , there exists a countable set such that whenever and . Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable...
G. Paouris (2005)
Studia Mathematica
Similarity:
The slicing problem can be reduced to the study of isotropic convex bodies K with , where is the isotropic constant. We study the ψ₂-behaviour of linear functionals on this class of bodies. It is proved that for all θ in a subset U of with measure σ(U) ≥ 1 - exp(-c√n). However, there exist isotropic convex bodies K with uniformly bounded geometric distance from the Euclidean ball, such that . In a different direction, we show that good average ψ₂-behaviour of linear functionals...
Richard J. Gardner, Daniel Hug, Wolfgang Weil (2013)
Journal of the European Mathematical Society
Similarity:
An investigation is launched into the fundamental characteristics of operations on and between sets, with a focus on compact convex sets and star sets (compact sets star-shaped with respect to the origin) in -dimensional Euclidean space . It is proved that if , with three trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in the Hausdorff metric, covariant, and associative if and only if it is addition for some . It is also demonstrated...
Grzegorz Lewicki, Michael Prophet (2007)
Studia Mathematica
Similarity:
We say that a function from is k-convex (for k ≤ L) if its kth derivative is nonnegative. Let P denote a projection from X onto V = Πₙ ⊂ X, where Πₙ denotes the space of algebraic polynomials of degree less than or equal to n. If we want P to leave invariant the cone of k-convex functions (k ≤ n), we find that such a demand is impossible to fulfill for nearly every k. Indeed, only for k = n-1 and k = n does such a projection exist. So let us consider instead a more general “shape”...
B. Mirković (1970)
Matematički Vesnik
Similarity:
A. D. Rojas-Sánchez, Angel Tamariz-Mascarúa (2016)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
For a topological property , we say that a space is star if for every open cover of the space there exists such that . We consider space with star countable extent establishing the relations between the star countable extent property and the properties star Lindelöf and feebly Lindelöf. We describe some classes of spaces in which the star countable extent property is equivalent to either the Lindelöf property or separability. An example is given of a Tychonoff star Lindelöf...
H. Fejzić, R. E. Svetic, C. E. Weil (2010)
Fundamenta Mathematicae
Similarity:
The main result of this paper is that if f is n-convex on a measurable subset E of ℝ, then f is n-2 times differentiable, n-2 times Peano differentiable and the corresponding derivatives are equal, and except on a countable set. Moreover is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.
Mirosław Baran, Leokadia Bialas-Ciez (2012)
Annales Polonici Mathematici
Similarity:
The paper deals with logarithmic capacities, an important tool in pluripotential theory. We show that a class of capacities, which contains the L-capacity, has the following product property: , where and are respectively a compact set and a norm in (j = 1,2), and ν is a norm in , ν = ν₁⊕ₚ ν₂ with some 1 ≤ p ≤ ∞. For a convex subset E of , denote by C(E) the standard L-capacity and by the minimal width of E, that is, the minimal Euclidean distance between two supporting hyperplanes...
Lúcia R. Junqueira, Franklin D. Tall (2003)
Fundamenta Mathematicae
Similarity:
We consider the question of when , where is the elementary submodel topology on X ∩ M, especially in the case when is compact.
Wei-Feng Xuan (2020)
Mathematica Bohemica
Similarity:
We say that a space has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of is countable. A space has a zeroset diagonal if there is a continuous mapping with , where . In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most .
Prakash G. Umarani (1983)
Annales Polonici Mathematici
Similarity:
J. M. A. M. van Neerven (2005)
Colloquium Mathematicae
Similarity:
We give a characterization of uniformly convex Banach spaces in terms of a uniform version of the Kadec-Klee property. As an application we prove that if (xₙ) is a bounded sequence in a uniformly convex Banach space X which is ε-separated for some 0 < ε ≤ 2, then for all norm one vectors x ∈ X there exists a subsequence of (xₙ) such that , where is the modulus of convexity of X. From this we deduce that the unit sphere of every infinite-dimensional uniformly convex Banach space...
Kyriakos Keremedis (2022)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space is countably compact if and only if it is countably subcompact relative to . (iii) For every metrizable space , the following are equivalent: (a) is compact; (b) for every open filter of , ; (c) is subcompact relative to . We also show: (iv) The negation of each of the statements, (a) every countably subcompact...
S. Rolewicz (2006)
Studia Mathematica
Similarity:
Let (X,||·||) be a separable real Banach space. Let f be a real-valued strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that . Then there is a dense -set such that f is Gateaux differentiable at every point of .