Displaying similar documents to “Amenability properties of Fourier algebras and Fourier-Stieltjes algebras: a survey”

Beurling-Figà-Talamanca-Herz algebras

Serap Öztop, Volker Runde, Nico Spronk (2012)

Studia Mathematica

Similarity:

For a locally compact group G and p ∈ (1,∞), we define and study the Beurling-Figà-Talamanca-Herz algebras A p ( G , ω ) . For p = 2 and abelian G, these are precisely the Beurling algebras on the dual group Ĝ. For p = 2 and compact G, our approach subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to define Beurling algebras through weights, i.e., possibly unbounded continuous functions, but rather through their inverses, which are bounded continuous functions. We...

Operator Segal algebras in Fourier algebras

Brian E. Forrest, Nico Spronk, Peter J. Wood (2007)

Studia Mathematica

Similarity:

Let G be a locally compact group, A(G) its Fourier algebra and L¹(G) the space of Haar integrable functions on G. We study the Segal algebra S¹A(G) = A(G) ∩ L¹(G) in A(G). It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of S¹A(G). We use it to show that the restriction operator u u | H : S ¹ A ( G ) A ( H ) , for some non-open closed subgroups H, is a surjective complete quotient map. We also show that if N is a non-compact closed subgroup,...

Approximate amenability for Banach sequence algebras

H. G. Dales, R. J. Loy, Y. Zhang (2006)

Studia Mathematica

Similarity:

We consider when certain Banach sequence algebras A on the set ℕ are approximately amenable. Some general results are obtained, and we resolve the special cases where A = p for 1 ≤ p < ∞, showing that these algebras are not approximately amenable. The same result holds for the weighted algebras p ( ω ) .

On a Construction of ModularGMS-algebras

Abd El-Mohsen Badawy (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper we investigate the class of all modular GMS-algebras which contains the class of MS-algebras. We construct modular GMS-algebras from the variety 𝐊 ̲ 2 by means of K ̲ 2 -quadruples. We also characterize isomorphisms of these algebras by means of K ̲ 2 -quadruples.

A geometric approach to full Colombeau algebras

R. Steinbauer (2010)

Banach Center Publications

Similarity:

We present a geometric approach to diffeomorphism invariant full Colombeau algebras which allows a particularly clear view of the construction of the intrinsically defined algebra ^ ( M ) on the manifold M given in [gksv].

Inductive extreme non-Arens regularity of the Fourier algebra A(G)

Zhiguo Hu (2002)

Studia Mathematica

Similarity:

Let G be a non-discrete locally compact group, A(G) the Fourier algebra of G, VN(G) the von Neumann algebra generated by the left regular representation of G which is identified with A(G)*, and WAP(Ĝ) the space of all weakly almost periodic functionals on A(G). We show that there exists a directed family ℋ of open subgroups of G such that: (1) for each H ∈ ℋ, A(H) is extremely non-Arens regular; (2) V N ( G ) = H V N ( H ) and V N ( G ) / W A P ( G ̂ ) = H [ V N ( H ) / W A P ( H ̂ ) ] ; (3) A ( G ) = H A ( H ) and it is a WAP-strong inductive union in the sense that the unions in...

Second duals of measure algebras

H. G. Dales, A. T.-M. Lau, D. Strauss

Similarity:

Let G be a locally compact group. We shall study the Banach algebras which are the group algebra L¹(G) and the measure algebra M(G) on G, concentrating on their second dual algebras. As a preliminary we shall study the second dual C₀(Ω)” of the C*-algebra C₀(Ω) for a locally compact space Ω, recognizing this space as C(Ω̃), where Ω̃ is the hyper-Stonean envelope of Ω. We shall study the C*-algebra B b ( Ω ) of bounded Borel functions on Ω, and we shall determine the exact cardinality of a variety...

Amenability properties of Figà-Talamanca-Herz algebras on inverse semigroups

Hasan Pourmahmood-Aghababa (2016)

Studia Mathematica

Similarity:

This paper continues the joint work with A. R. Medghalchi (2012) and the author’s recent work (2015). For an inverse semigroup S, it is shown that A p ( S ) has a bounded approximate identity if and only if l¹(S) is amenable (a generalization of Leptin’s theorem) and that A(S), the Fourier algebra of S, is operator amenable if and only if l¹(S) is amenable (a generalization of Ruan’s theorem).

Division algebras that generalize Dickson semifields

Daniel Thompson (2020)

Communications in Mathematics

Similarity:

We generalize Knuth’s construction of Case I semifields quadratic over a weak nucleus, also known as generalized Dickson semifields, by doubling of central simple algebras. We thus obtain division algebras of dimension 2 s 2 by doubling central division algebras of degree s . Results on isomorphisms and automorphisms of these algebras are obtained in certain cases.

Metric generalizations of Banach algebras

W. Żelazko

Similarity:

CONTENTSPRELIMINARIES§ 0. Introduction.......................................................................................................................................................................3§ 1. Definitions and notation.................................................................................................................................................5Chapter ILOCALLY BOUNDED ALGEBRAS§ 2. Basic facts and examples..............................................................................................................................................6§...

Generalized Post algebras and their application to some infinitary many-valued logics

Cat-Ho Nguyen

Similarity:

CONTENTSIntroduction............................................................................................................................................................................... 5Part I. A generalization of Post algebras............................................................................................................................. 7   1. Definition and characterization of generalized Post algebras............................................. 7   2. Post...

Relatively weak* closed ideals of A(G), sets of synthesis and sets of uniqueness

A. Ülger (2014)

Colloquium Mathematicae

Similarity:

Let G be a locally compact amenable group, and A(G) and B(G) the Fourier and Fourier-Stieltjes algebras of G. For a closed subset E of G, let J(E) and k(E) be the smallest and largest closed ideals of A(G) with hull E, respectively. We study sets E for which the ideals J(E) or/and k(E) are σ(A(G),C*(G))-closed in A(G). Moreover, we present, in terms of the uniform topology of C₀(G) and the weak* topology of B(G), a series of characterizations of sets obeying synthesis. Finally, closely...

Schwartz kernel theorem in algebras of generalized functions

Vincent Valmorin (2010)

Banach Center Publications

Similarity:

A new approach to the generalization of Schwartz’s kernel theorem to Colombeau algebras of generalized functions is given. It is based on linear maps from algebras of classical functions to algebras of generalized ones. In particular, this approach enables one to give a meaning to certain hypotheses in preceding similar work on this theorem. Results based on the properties of G -generalized functions class are given. A straightforward relationship between the classical and the generalized...

Character Connes amenability of dual Banach algebras

Mohammad Ramezanpour (2018)

Czechoslovak Mathematical Journal

Similarity:

We study the notion of character Connes amenability of dual Banach algebras and show that if A is an Arens regular Banach algebra, then A * * is character Connes amenable if and only if A is character amenable, which will resolve positively Runde’s problem for this concept of amenability. We then characterize character Connes amenability of various dual Banach algebras related to locally compact groups. We also investigate character Connes amenability of Lau product and module extension...

Computing discrete convolutions with verified accuracy via Banach algebras and the FFT

Jean-Philippe Lessard (2018)

Applications of Mathematics

Similarity:

We introduce a method to compute rigorous component-wise enclosures of discrete convolutions using the fast Fourier transform, the properties of Banach algebras, and interval arithmetic. The purpose of this new approach is to improve the implementation and the applicability of computer-assisted proofs performed in weighed 1 Banach algebras of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We introduce some application examples, in particular a rigorous...

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

Similarity:

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

Absolute convergence of multiple Fourier integrals

Yurii Kolomoitsev, Elijah Liflyand (2013)

Studia Mathematica

Similarity:

Various new sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained. The results are given in terms of L p integrability of the function and its partial derivatives, each with a different p. These p are subject to certain relations known earlier only for some particular cases. Sharpness and applications of the results obtained are also discussed.

Engel BCI-algebras: an application of left and right commutators

Ardavan Najafi, Arsham Borumand Saeid (2021)

Mathematica Bohemica

Similarity:

We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of n -Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type 2 is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is...

Standardly stratified split and lower triangular algebras

Eduardo do N. Marcos, Hector A. Merklen, Corina Sáenz (2002)

Colloquium Mathematicae

Similarity:

In the first part, we study algebras A such that A = R ⨿ I, where R is a subalgebra and I a two-sided nilpotent ideal. Under certain conditions on I, we show that A is standardly stratified if and only if R is standardly stratified. Next, for A = U 0 M V , we show that A is standardly stratified if and only if the algebra R = U × V is standardly stratified and V M is a good V-module.

Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2

Bruce Allison, Stephen Berman, Arturo Pianzola (2014)

Journal of the European Mathematical Society

Similarity:

Let 𝕄 n be the class of all multiloop algebras of finite dimensional simple Lie algebras relative to n -tuples of commuting finite order automorphisms. It is a classical result that 𝕄 1 is the class of all derived algebras modulo their centres of affine Kac-Moody Lie algebras. This combined with the Peterson-Kac conjugacy theorem for affine algebras results in a classification of the algebras in 𝕄 1 . In this paper, we classify the algebras in 𝕄 2 , and further determine the relationship between...

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.