The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On families of weakly dependent random variables”

Size of the giant component in a random geometric graph

Ghurumuruhan Ganesan (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper, we study the size of the giant component C G in the random geometric graph G = G ( n , r n , f ) of n nodes independently distributed each according to a certain density f ( · ) in [ 0 , 1 ] 2 satisfying inf x [ 0 , 1 ] 2 f ( x ) g t ; 0 . If c 1 n r n 2 c 2 log n n for some positive constants c 1 , c 2 and n r n 2 as n , we show that the giant component of G contains at least n - o ( n ) nodes with probability at least 1 - e - β n r n 2 for all n and for some positive constant β . We also obtain estimates on the diameter and number of the non-giant components of G .

Asymptotic behavior of a stochastic combustion growth process

Alejandro Ramírez, Vladas Sidoravicius (2004)

Journal of the European Mathematical Society

Similarity:

We study a continuous time growth process on the d -dimensional hypercubic lattice 𝒵 d , which admits a phenomenological interpretation as the combustion reaction A + B 2 A , where A represents heat particles and B inert particles. This process can be described as an interacting particle system in the following way: at time 0 a simple symmetric continuous time random walk of total jump rate one begins to move from the origin of the hypercubic lattice; then, as soon as any random walk visits a site...

Uniform mixing time for random walk on lamplighter graphs

Júlia Komjáthy, Jason Miller, Yuval Peres (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Suppose that 𝒢 is a finite, connected graph and X is a lazy random walk on 𝒢 . The lamplighter chain X associated with X is the random walk on the wreath product 𝒢 = 𝐙 2 𝒢 , the graph whose vertices consist of pairs ( f ̲ , x ) where f is a labeling of the vertices of 𝒢 by elements of 𝐙 2 = { 0 , 1 } and x is a vertex in 𝒢 . There is an edge between ( f ̲ , x ) and ( g ̲ , y ) in 𝒢 if and only if x is adjacent to y in 𝒢 and f z = g z for all z x , y . In each step, X moves from a configuration ( f ̲ , x ) by updating x to y using the transition rule of X and then...

Positivity of integrated random walks

Vladislav Vysotsky (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Take a centered random walk S n and consider the sequence of its partial sums A n : = i = 1 n S i . Suppose S 1 is in the domain of normal attraction of an α -stable law with 1 l t ; α 2 . Assuming that S 1 is either right-exponential (i.e. ( S 1 g t ; x | S 1 g t ; 0 ) = e - a x for some a g t ; 0 and all x g t ; 0 ) or right-continuous (skip free), we prove that { A 1 g t ; 0 , , A N g t ; 0 } C α N 1 / ( 2 α ) - 1 / 2 as N , where C α g t ; 0 depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.

L -limited-like properties on Banach spaces

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the p - L -limited * and the p -(SR * ) properties and characterize these classes of Banach spaces in terms of p - L -limited * and p -Right * subsets. The p - L -limited * property is studied in some spaces of operators.

Some limit theorems for m -pairwise negative quadrant dependent random variables

Yongfeng Wu, Jiangyan Peng (2018)

Kybernetika

Similarity:

The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent p ( 1 p 2 ) for m -pairwise negatively quadrant dependent ( m -PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise m -PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be...

Property ( 𝐰𝐋 ) and the reciprocal Dunford-Pettis property in projective tensor products

Ioana Ghenciu (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A Banach space X has the reciprocal Dunford-Pettis property ( R D P P ) if every completely continuous operator T from X to any Banach space Y is weakly compact. A Banach space X has the R D P P (resp. property ( w L ) ) if every L -subset of X * is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product X π Y has property ( w L ) when X has the R D P P , Y has property ( w L ) , and L ( X , Y * ) = K ( X , Y * ) .

Random ε-nets and embeddings in N

Y. Gordon, A. E. Litvak, A. Pajor, N. Tomczak-Jaegermann (2007)

Studia Mathematica

Similarity:

We show that, given an n-dimensional normed space X, a sequence of N = ( 8 / ε ) 2 n independent random vectors ( X i ) i = 1 N , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map Γ : N defined by Γ x = ( x , X i ) i = 1 N embeds X in N with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into N with asymptotically best possible relation between N, n, and ε.

Factorizations of normality via generalizations of β -normality

Ananga Kumar Das, Pratibha Bhat, Ria Gupta (2016)

Mathematica Bohemica

Similarity:

The notion of β -normality was introduced and studied by Arhangel’skii, Ludwig in 2001. Recently, almost β -normal spaces, which is a simultaneous generalization of β -normal and almost normal spaces, were introduced by Das, Bhat and Tartir. We introduce a new generalization of normality, namely weak β -normality, in terms of θ -closed sets, which turns out to be a simultaneous generalization of β -normality and θ -normality. A space X is said to be weakly β -normal (w β -normal ) if for every...

Giant component and vacant set for random walk on a discrete torus

Itai Benjamini, Alain-Sol Sznitman (2008)

Journal of the European Mathematical Society

Similarity:

We consider random walk on a discrete torus E of side-length N , in sufficiently high dimension d . We investigate the percolative properties of the vacant set corresponding to the collection of sites which have not been visited by the walk up to time u N d . We show that when u is chosen small, as N tends to infinity, there is with overwhelming probability a unique connected component in the vacant set which contains segments of length const log N . Moreover, this connected component occupies a...

On g c -colorings of nearly bipartite graphs

Yuzhuo Zhang, Xia Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple graph, let d ( v ) denote the degree of a vertex v and let g be a nonnegative integer function on V ( G ) with 0 g ( v ) d ( v ) for each vertex v V ( G ) . A g c -coloring of G is an edge coloring such that for each vertex v V ( G ) and each color c , there are at least g ( v ) edges colored c incident with v . The g c -chromatic index of G , denoted by χ g c ' ( G ) , is the maximum number of colors such that a g c -coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g ( G ) or δ g ( G ) - 1 , where δ g ( G ) = min v V ( G ) d ( v ) / g ( v ) . A graph G is nearly bipartite,...

Complete pairs of coanalytic sets

Jean Saint Raymond (2007)

Fundamenta Mathematicae

Similarity:

Let X be a Polish space, and let C₀ and C₁ be disjoint coanalytic subsets of X. The pair (C₀,C₁) is said to be complete if for every pair (D₀,D₁) of disjoint coanalytic subsets of ω ω there exists a continuous function f : ω ω X such that f - 1 ( C ) = D and f - 1 ( C ) = D . We give several explicit examples of complete pairs of coanalytic sets.