Displaying similar documents to “Weak Hopf algebras and quantum groupoids”

Free dynamical quantum groups and the dynamical quantum group S U Q d y n ( 2 )

Thomas Timmermann (2012)

Banach Center Publications

Similarity:

We introduce dynamical analogues of the free orthogonal and free unitary quantum groups, which are no longer Hopf algebras but Hopf algebroids or quantum groupoids. These objects are constructed on the purely algebraic level and on the level of universal C*-algebras. As an example, we recover the dynamical S U q ( 2 ) studied by Koelink and Rosengren, and construct a refinement that includes several interesting limit cases.

Relating quantum and braided Lie algebras

X. Gomez, S. Majid (2003)

Banach Center Publications

Similarity:

We outline our recent results on bicovariant differential calculi on co-quasitriangular Hopf algebras, in particular that if Γ is a quantum tangent space (quantum Lie algebra) for a CQT Hopf algebra A, then the space k Γ is a braided Lie algebra in the category of A-comodules. An important consequence of this is that the universal enveloping algebra U ( Γ ) is a bialgebra in the category of A-comodules.

The geometric reductivity of the quantum group S L q ( 2 )

Michał Kępa, Andrzej Tyc (2011)

Colloquium Mathematicae

Similarity:

We introduce the concept of geometrically reductive quantum group which is a generalization of the Mumford definition of geometrically reductive algebraic group. We prove that if G is a geometrically reductive quantum group and acts rationally on a commutative and finitely generated algebra A, then the algebra of invariants A G is finitely generated. We also prove that in characteristic 0 a quantum group G is geometrically reductive if and only if every rational G-module is semisimple,...

Braided coproduct, antipode and adjoint action for U q ( s l 2 )

Pavle Pandžić, Petr Somberg (2024)

Archivum Mathematicum

Similarity:

Motivated by our attempts to construct an analogue of the Dirac operator in the setting of U q ( 𝔰𝔩 n ) , we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra U q ( 𝔰𝔩 2 ) . The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.

The affineness criterion for quantum Hom-Yetter-Drinfel'd modules

Shuangjian Guo, Shengxiang Wang (2016)

Colloquium Mathematicae

Similarity:

Quantum integrals associated to quantum Hom-Yetter-Drinfel’d modules are defined, and the affineness criterion for quantum Hom-Yetter-Drinfel’d modules is proved in the following form. Let (H,α) be a monoidal Hom-Hopf algebra, (A,β) an (H,α)-Hom-bicomodule algebra and B = A c o H . Under the assumption that there exists a total quantum integral γ: H → Hom(H,A) and the canonical map β : A B A A H , a B b S - 1 ( b [ 1 ] ) α ( b [ 0 ] [ - 1 ] ) β - 1 ( a ) β ( b [ 0 ] [ 0 ] ) , is surjective, we prove that the induction functor A B - : ̃ ( k ) B A H is an equivalence of categories.

Noncommutative Borsuk-Ulam-type conjectures

Paul F. Baum, Ludwik Dąbrowski, Piotr M. Hajac (2015)

Banach Center Publications

Similarity:

Within the framework of free actions of compact quantum groups on unital C*-algebras, we propose two conjectures. The first one states that, if δ : A A m i n H is a free coaction of the C*-algebra H of a non-trivial compact quantum group on a unital C*-algebra A, then there is no H-equivariant *-homomorphism from A to the equivariant join C*-algebra A δ H . For A being the C*-algebra of continuous functions on a sphere with the antipodal coaction of the C*-algebra of functions on ℤ/2ℤ, we recover the celebrated...

A class of quantum doubles of pointed Hopf algebras of rank one

Hua Sun, Yueming Li (2023)

Czechoslovak Mathematical Journal

Similarity:

We construct a class of quantum doubles D ( H D n ) of pointed Hopf algebras of rank one H 𝒟 . We describe the algebra structures of D ( H D n ) by generators with relations. Moreover, we give the comultiplication Δ D , counit ε D and the antipode S D , respectively.

Exponentiations over the quantum algebra U q ( s l 2 ( ) )

Sonia L’Innocente, Françoise Point, Carlo Toffalori (2013)

Confluentes Mathematici

Similarity:

We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra U q ( s l 2 ( ) ) . We discuss two cases, according to whether the parameter q is a root of unity. We show that the universal enveloping algebra of s l 2 ( ) embeds in a non-principal ultraproduct of U q ( s l 2 ( ) ) , where q varies over the primitive roots of unity.

An idempotent for a Jordanian quantum complex sphere

Bartosz Zieliński (2003)

Banach Center Publications

Similarity:

A new Jordanian quantum complex 4-sphere together with an instanton-type idempotent is obtained as a suspension of the Jordanian quantum group S L h ( 2 ) .

Universal lifting theorem and quasi-Poisson groupoids

David Inglesias-Ponte, Camille Laurent-Gengoux, Ping Xu (2012)

Journal of the European Mathematical Society

Similarity:

We prove the universal lifting theorem: for an α -simply connected and α -connected Lie groupoid Γ with Lie algebroid A , the graded Lie algebra of multi-differentials on A is isomorphic to that of multiplicative multi-vector fields on Γ . As a consequence, we obtain the integration theorem for a quasi-Lie bialgebroid, which generalizes various integration theorems in the literature in special cases. The second goal of the paper is the study of basic properties of quasi-Poisson groupoids....

Quantum 4-sphere: the infinitesimal approach

F. Bonechi, M. Tarlini, N. Ciccoli (2003)

Banach Center Publications

Similarity:

We describe how the constructions of quantum homogeneous spaces using infinitesimal invariance and quantum coisotropic subgroups are related. As an example we recover the quantum 4-sphere of [2] through infinitesimal invariance with respect to q ( S U ( 2 ) ) .

The duality theorem for twisted smash products of Hopf algebras and its applications

Zhongwei Wang, Liangyun Zhang (2015)

Colloquium Mathematicae

Similarity:

Let A T H denote the twisted smash product of an arbitrary algebra A and a Hopf algebra H over a field. We present an analogue of the celebrated Blattner-Montgomery duality theorem for A T H , and as an application we establish the relationship between the homological dimensions of A T H and A if H and its dual H* are both semisimple.

Covariantization of quantized calculi over quantum groups

Seyed Ebrahim Akrami, Shervin Farzi (2020)

Mathematica Bohemica

Similarity:

We introduce a method for construction of a covariant differential calculus over a Hopf algebra A from a quantized calculus d a = [ D , a ] , a A , where D is a candidate for a Dirac operator for A . We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra A . We apply this method to the Dirac operator for the quantum SL ( 2 ) given by S. Majid. We find that the differential calculus obtained by our...

Antiassociative groupoids

Milton Braitt, David Hobby, Donald Silberger (2017)

Mathematica Bohemica

Similarity:

Given a groupoid G , , and k 3 , we say that G is antiassociative if an only if for all x 1 , x 2 , x 3 G , ( x 1 x 2 ) x 3 and x 1 ( x 2 x 3 ) are never equal. Generalizing this, G , is k -antiassociative if and only if for all x 1 , x 2 , ... , x k G , any two distinct expressions made by putting parentheses in x 1 x 2 x 3 x k are never equal. We prove that for every k 3 , there exist finite groupoids that are k -antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.

Crystal bases for the quantum queer superalgebra

Dimitar Grantcharov, Ji Hye Jung, Seok-Jin Kang, Masaki Kashiwara, Myungho Kim (2015)

Journal of the European Mathematical Society

Similarity:

In this paper, we develop the crystal basis theory for the quantum queer superalgebra U q ( 𝔮 ( n ) ) . We define the notion of crystal bases and prove the tensor product rule for U q ( 𝔮 ( n ) ) -modules in the category 𝒪 int 0 . Our main theorem shows that every U q ( 𝔮 ( n ) ) -module in the category 𝒪 int 0 has a unique crystal basis.

The infinitesimal counterpart of tangent presymplectic groupoids of higher order

P. M. Kouotchop Wamba, A. MBA (2018)

Archivum Mathematicum

Similarity:

Let G , ω be a presymplectic groupoid. In this paper we characterize the infinitesimal counter part of the tangent presymplectic groupoid of higher order, ( T r G , ω c ) where T r G is the tangent groupoid of higher order and ω c is the complete lift of higher order of presymplectic form ω .

Remarks on Sekine quantum groups

Jialei Chen, Shilin Yang (2022)

Czechoslovak Mathematical Journal

Similarity:

We first describe the Sekine quantum groups 𝒜 k (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of 𝒜 k and describe their representation rings r ( 𝒜 k ) . Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of r ( 𝒜 k ) .

Cobraided smash product Hom-Hopf algebras

Tianshui Ma, Haiying Li, Tao Yang (2014)

Colloquium Mathematicae

Similarity:

Let (A,α) and (B,β) be two Hom-Hopf algebras. We construct a new class of Hom-Hopf algebras: R-smash products ( A R B , α β ) . Moreover, necessary and sufficient conditions for ( A R B , α β ) to be a cobraided Hom-Hopf algebra are given.

On a cubic Hecke algebra associated with the quantum group U q ( 2 )

Janusz Wysoczański (2010)

Banach Center Publications

Similarity:

We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group U q ( 2 ) , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators h j : = I j α I n - 2 - j on ( ³ ) n with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra q , n ( 2 ) associated with the quantum group U q ( 2 ) . The purpose of this note is to present the construction.

Effective Hamiltonians and Quantum States

Lawrence C. Evans (2000-2001)

Séminaire Équations aux dérivées partielles

Similarity:

We recount here some preliminary attempts to devise quantum analogues of certain aspects of Mather’s theory of minimizing measures [M1-2, M-F], augmented by the PDE theory from Fathi [F1,2] and from [E-G1]. This earlier work provides us with a Lipschitz continuous function u solving the eikonal equation aėȧnd a probability measure σ solving a related transport equation. We present some elementary formal identities relating certain quantum states ψ and u , σ . We show also how...