Displaying similar documents to “Propagation of uniform Gevrey regularity of solutions to evolution equations”

Global well-posedness for the Klein-Gordon-Schrödinger system with higher order coupling

Agus Leonardi Soenjaya (2022)

Mathematica Bohemica

Similarity:

Global well-posedness for the Klein-Gordon-Schrödinger system with generalized higher order coupling, which is a system of PDEs in two variables arising from quantum physics, is proven. It is shown that the system is globally well-posed in ( u , n ) L 2 × L 2 under some conditions on the nonlinearity (the coupling term), by using the L 2 conservation law for u and controlling the growth of n via the estimates in the local theory. In particular, this extends the well-posedness results for such a system in...

Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains

Toshiyuki Suzuki (2014)

Mathematica Bohemica

Similarity:

Nonlinear Schrödinger equations (NLS) a with strongly singular potential a | x | - 2 on a bounded domain Ω are considered. If Ω = N and a > - ( N - 2 ) 2 / 4 , then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here a = - ( N - 2 ) 2 / 4 is excluded because D ( P a ( N ) 1 / 2 ) is not equal to H 1 ( N ) , where P a ( N ) : = - Δ - ( N - 2 ) 2 / ( 4 | x | 2 ) is nonnegative and selfadjoint in L 2 ( N ) . On the other hand, if Ω is a smooth and bounded domain with 0 Ω , the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua...

Existence and multiplicity results for a nonlinear stationary Schrödinger equation

Danila Sandra Moschetto (2010)

Annales Polonici Mathematici

Similarity:

We revisit Kristály’s result on the existence of weak solutions of the Schrödinger equation of the form -Δu + a(x)u = λb(x)f(u), x N , u H ¹ ( N ) , where λ is a positive parameter, a and b are positive functions, while f : is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri’s recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.

On the number of positive solutions of singularly perturbed 1D nonlinear Schrödinger equations

Patricio Felmer, Salomé Martínez, Kazunaga Tanaka (2006)

Journal of the European Mathematical Society

Similarity:

We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). When V ( x ) has multiple critical points, (1.1) has a wide variety of positive solutions for small ε and the number of positive solutions increases to as ε 0 . We give an estimate of the number of positive solutions whose growth order depends on the number of local maxima of V ( x ) . Envelope functions or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.

Waves in Honeycomb Structures

Charles L. Fefferman, Michael I. Weinstein (2012)

Journées Équations aux dérivées partielles

Similarity:

We review recent work of the authors on the non-relativistic Schrödinger equation with a honeycomb lattice potential, V . In particular, we summarize results on (i) the existence of Dirac points, conical singularities in dispersion surfaces of H V = - Δ + V and (ii) the two-dimensional Dirac equations, as the large (but finite) time effective system of equations governing the evolution e - i H V t ψ 0 , for data ψ 0 , which is spectrally localized near a Dirac point. We conclude with a formal derivation and discussion...

A variational analysis of a gauged nonlinear Schrödinger equation

Alessio Pomponio, David Ruiz (2015)

Journal of the European Mathematical Society

Similarity:

This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem: - Δ u ( x ) + ω + h 2 ( | x | ) | x | 2 + | x | + h ( s ) s u 2 ( s ) d s u ( x ) = | u ( x ) | p - 1 u ( x ) , where h ( r ) = 1 2 0 r s u 2 ( s ) d s . This problem is the Euler-Lagrange equation of a certain energy functional. In this paper the study of the global behavior of such functional is completed. We show that for p ( 1 , 3 ) , the functional may be bounded from below or not, depending on ω . Quite surprisingly, the threshold value for ω is explicit....

Quasi-periodic solutions with Sobolev regularity of NLS on 𝕋 d with a multiplicative potential

Massimiliano Berti, Philippe Bolle (2013)

Journal of the European Mathematical Society

Similarity:

We prove the existence of quasi-periodic solutions for Schrödinger equations with a multiplicative potential on 𝕋 d , d 1 , finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are C then the solutions are C . The proofs are based on an improved Nash-Moser iterative scheme, which assumes the weakest tame estimates for the inverse linearized...

Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation

Todor Gramchev, Grzegorz Łysik (2008)

Banach Center Publications

Similarity:

We study the Gevrey regularity down to t = 0 of solutions to the initial value problem for a semilinear heat equation t u - Δ u = u M . The approach is based on suitable iterative fixed point methods in L p based Banach spaces with anisotropic Gevrey norms with respect to the time and the space variables. We also construct explicit solutions uniformly analytic in t ≥ 0 and x ∈ ℝⁿ for some conservative nonlinear terms with symmetries.

Global existence of solutions to Schrödinger equations on compact riemannian manifolds below H 1

Sijia Zhong (2010)

Bulletin de la Société Mathématique de France

Similarity:

In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. s < 1 , under some bilinear Strichartz assumption. We will find some s ˜ < 1 , such that the solution is global for s > s ˜ .

Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3d case

Jean Bourgain, Aynur Bulut (2014)

Journal of the European Mathematical Society

Similarity:

We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in d to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in 3 . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated...

Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation

Marcel Guardia, Vadim Kaloshin (2015)

Journal of the European Mathematical Society

Similarity:

We consider the cubic defocusing nonlinear Schrödinger equation in the two dimensional torus. Fix s > 1 . Recently Colliander, Keel, Staffilani, Tao and Takaoka proved the existence of solutions with s -Sobolev norm growing in time. We establish the existence of solutions with polynomial time estimates. More exactly, there is c > 0 such that for any 𝒦 1 we find a solution u and a time T such that u ( T ) H s 𝒦 u ( 0 ) H s . Moreover, the time T satisfies the polynomial bound 0 < T < 𝒦 C .

On the equivalence of Green functions for general Schrödinger operators on a half-space

Abdoul Ifra, Lotfi Riahi (2004)

Annales Polonici Mathematici

Similarity:

We consider the general Schrödinger operator L = d i v ( A ( x ) x ) - μ on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function G Δ provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity K considered by Zhao and Pinchover. As an application we study the cone L ( ) of all positive L-solutions continuously...

On the radius of spatial analyticity for the higher order nonlinear dispersive equation

Aissa Boukarou, Kaddour Guerbati, Khaled Zennir (2022)

Mathematica Bohemica

Similarity:

In this work, using bilinear estimates in Bourgain type spaces, we prove the local existence of a solution to a higher order nonlinear dispersive equation on the line for analytic initial data u 0 . The analytic initial data can be extended as holomorphic functions in a strip around the x -axis. By Gevrey approximate conservation law, we prove the existence of the global solutions, which improve earlier results of Z. Zhang, Z. Liu, M. Sun, S. Li, (2019).

Solvability for semilinear PDE with multiple characteristics

Alessandro Oliaro, Luigi Rodino (2003)

Banach Center Publications

Similarity:

We prove local solvability in Gevrey spaces for a class of semilinear partial differential equations. The linear part admits characteristics of multiplicity k ≥ 2 and data are fixed in G σ , 1 < σ < k/(k-1). The nonlinearity, containing derivatives of lower order, is assumed of class G σ with respect to all variables.

A nonlinear elliptic equation with singular potential and applications to nonlinear field equations

Marino Badiale, Vieri Benci, Sergio Rolando (2007)

Journal of the European Mathematical Society

Similarity:

We prove the existence of cylindrical solutions to the semilinear elliptic problem Δ u + u | y | 2 = f ( u ) , u H 1 ( N ) , u 0 , where ( y , z ) k × N k , N > k 2 and f has a double-power behaviour, subcritical at infinity and supercritical near the origin. This result also implies the existence of solitary waves with nonvanishing angular momentum for nonlinear Schr¨odinger and Klein–Gordon equations.

Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity

Antonio Ambrosetti, Veronica Felli, Andrea Malchiodi (2005)

Journal of the European Mathematical Society

Similarity:

We deal with a class on nonlinear Schrödinger equations (NLS) with potentials V ( x ) | x | α , 0 < α < 2 , and K ( x ) | x | β , β > 0 . Working in weighted Sobolev spaces, the existence of ground states v ε belonging to W 1 , 2 ( N ) is proved under the assumption that σ < p < ( N + 2 ) / ( N 2 ) for some σ = σ N , α , β . Furthermore, it is shown that v ε are spikes concentrating at a minimum point of 𝒜 = V θ K 2 / ( p 1 ) , where θ = ( p + 1 ) / ( p 1 ) 1 / 2 .

Semiclassical measures for the Schrödinger equation on the torus

Nalini Anantharaman, Fabricio Macià (2014)

Journal of the European Mathematical Society

Similarity:

In this article, the structure of semiclassical measures for solutions to the linear Schrödinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality,...

Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos (2021)

Czechoslovak Mathematical Journal

Similarity:

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u 0 X , where X { M 2 , q s ( ) , H σ ( 𝕋 ) , H s 1 ( ) + H s 2 ( 𝕋 ) } and q [ 1 , 2 ] , s 0 , or σ 0 , or s 2 s 1 0 . Moreover, if M 2 , q s ( ) L 3 ( ) , or if σ 1 6 , or if s 1 1 6 and s 2 > 1 2 we show that the Cauchy problem is unconditionally wellposed in X . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ...

Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space

Andrea R. Nahmod, Gigliola Staffilani (2015)

Journal of the European Mathematical Society

Similarity:

We also prove a long time existence result; more precisely we prove that for fixed T > 0 there exists a set Σ T , ( Σ T ) > 0 such that any data φ ω ( x ) H γ ( 𝕋 3 ) , γ < 1 , ω Σ T , evolves up to time T into a solution u ( t ) with u ( t ) - e i t Δ φ ω C ( [ 0 , T ] ; H s ( 𝕋 3 ) ) , s = s ( γ ) > 1 . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space H 1 ( 𝕋 3 ) , that is in the supercritical scaling regime.

Uniform regularity for an isentropic compressible MHD- P 1 approximate model arising in radiation hydrodynamics

Tong Tang, Jianzhu Sun (2021)

Czechoslovak Mathematical Journal

Similarity:

It is well known that people can derive the radiation MHD model from an MHD- P 1 approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD- P 1 approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD- P 1 approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and...

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

Similarity:

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and...