Displaying similar documents to “More reflections on compactness”

A note on star Lindelöf, first countable and normal spaces

Wei-Feng Xuan (2017)

Mathematica Bohemica

Similarity:

A topological space X is said to be star Lindelöf if for any open cover 𝒰 of X there is a Lindelöf subspace A X such that St ( A , 𝒰 ) = X . The “extent” e ( X ) of X is the supremum of the cardinalities of closed discrete subsets of X . We prove that under V = L every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under MA + ¬ CH , which shows that a star Lindelöf, first countable and normal space may not have countable extent.

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact...

A note on spaces with countable extent

Yan-Kui Song (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let P be a topological property. A space X is said to be star P if whenever 𝒰 is an open cover of X , there exists a subspace A X with property P such that X = S t ( A , 𝒰 ) . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

A nice subclass of functionally countable spaces

Vladimir Vladimirovich Tkachuk (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable if f ( X ) is countable for any continuous function f : X . We will call a space X exponentially separable if for any countable family of closed subsets of X , there exists a countable set A X such that A 𝒢 whenever 𝒢 and 𝒢 . Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable...

An observation on spaces with a zeroset diagonal

Wei-Feng Xuan (2020)

Mathematica Bohemica

Similarity:

We say that a space X has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. A space X has a zeroset diagonal if there is a continuous mapping f : X 2 [ 0 , 1 ] with Δ X = f - 1 ( 0 ) , where Δ X = { ( x , x ) : x X } . In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most 𝔠 .

Spaces with property ( D C ( ω 1 ) )

Wei-Feng Xuan, Wei-Xue Shi (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that if X is a first countable space with property ( D C ( ω 1 ) ) and with a G δ -diagonal then the cardinality of X is at most 𝔠 . We also show that if X is a first countable, DCCC, normal space then the extent of X is at most 𝔠 .

Locally functionally countable subalgebra of ( L )

M. Elyasi, A. A. Estaji, M. Robat Sarpoushi (2020)

Archivum Mathematicum

Similarity:

Let L c ( X ) = { f C ( X ) : C f ¯ = X } , where C f is the union of all open subsets U X such that | f ( U ) | 0 . In this paper, we present a pointfree topology version of L c ( X ) , named c ( L ) . We observe that c ( L ) enjoys most of the important properties shared by ( L ) and c ( L ) , where c ( L ) is the pointfree version of all continuous functions of C ( X ) with countable image. The interrelation between ( L ) , c ( L ) , and c ( L ) is examined. We show that L c ( X ) c ( 𝔒 ( X ) ) for any space X . Frames L for which c ( L ) = ( L ) are characterized.

On a question of C c ( X )

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of C ( X ) , Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that C c ( X ) is isomorphic to some ring of continuous functions if and only if υ 0 X is functionally countable. For a strongly zero-dimensional space X , this is equivalent to say that X is functionally countable. Hence for every P -space it is equivalent to pseudo- 0 -compactness.

Characterizations of z -Lindelöf spaces

Ahmad Al-Omari, Takashi Noiri (2017)

Archivum Mathematicum

Similarity:

A topological space ( X , τ ) is said to be z -Lindelöf  [1] if every cover of X by cozero sets of ( X , τ ) admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of z -Lindelöf spaces.

On hereditary normality of ω * , Kunen points and character ω 1

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that ω * { p } is not normal, if p is a limit point of some countable subset of ω * , consisting of points of character ω 1 . Moreover, such a point p is a Kunen point and a super Kunen point.

A new Lindelöf space with points G δ

Alan S. Dow (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that * implies there is a zero-dimensional Hausdorff Lindelöf space of cardinality 2 1 which has points G δ . In addition, this space has the property that it need not be Lindelöf after countably closed forcing.