Displaying similar documents to “On dimensionally restricted maps”

The canonical constructions of connections on total spaces of fibred manifolds

Włodzimierz M. Mikulski (2024)

Archivum Mathematicum

Similarity:

We classify classical linear connections A ( Γ , Λ , Θ ) on the total space Y of a fibred manifold Y M induced in a natural way by the following three objects: a general connection Γ in Y M , a classical linear connection Λ on M and a linear connection Θ in the vertical bundle V Y Y . The main result says that if dim ( M ) 3 and dim ( Y ) - dim ( M ) 3 then the natural operators A under consideration form the 17 dimensional affine space.

Finite-dimensional maps and dendrites with dense sets of end points

Hisao Kato, Eiichi Matsuhashi (2006)

Colloquium Mathematicae

Similarity:

The first author has recently proved that if f: X → Y is a k-dimensional map between compacta and Y is p-dimensional (0 ≤ k, p < ∞), then for each 0 ≤ i ≤ p + k, the set of maps g in the space C ( X , I p + 2 k + 1 - i ) such that the diagonal product f × g : X Y × I p + 2 k + 1 - i is an (i+1)-to-1 map is a dense G δ -subset of C ( X , I p + 2 k + 1 - i ) . In this paper, we prove that if f: X → Y is as above and D j (j = 1,..., k) are superdendrites, then the set of maps h in C ( X , j = 1 k D j × I p + 1 - i ) such that f × h : X Y × ( j = 1 k D j × I p + 1 - i ) is (i+1)-to-1 is a dense G δ -subset of C ( X , j = 1 k D j × I p + 1 - i ) for each 0 ≤ i ≤ p.

The G -graded identities of the Grassmann Algebra

Lucio Centrone (2016)

Archivum Mathematicum

Similarity:

Let G be a finite abelian group with identity element 1 G and L = g G L g be an infinite dimensional G -homogeneous vector space over a field of characteristic 0 . Let E = E ( L ) be the Grassmann algebra generated by L . It follows that E is a G -graded algebra. Let | G | be odd, then we prove that in order to describe any ideal of G -graded identities of E it is sufficient to deal with G ' -grading, where | G ' | | G | , dim F L 1 G ' = and dim F L g ' < if g ' 1 G ' . In the same spirit of the case | G | odd, if | G | is even it is sufficient to study only those G -gradings...

Maximal non valuation domains in an integral domain

Rahul Kumar, Atul Gaur (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring R of an integral domain S is called a maximal non valuation domain in S if R is not a valuation subring of S , and for any ring T such that R T S , T is a valuation subring of S . For a local domain S , the equivalence of an integrally closed maximal non VD in S and a maximal non local subring of S is established. The relation between dim ( R , S ) and...

Contracting endomorphisms and dualizing complexes

Saeed Nasseh, Sean Sather-Wagstaff (2015)

Czechoslovak Mathematical Journal

Similarity:

We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring R . Our focus is on homological properties of contracting endomorphisms of R , e.g., the Frobenius endomorphism when R contains a field of positive characteristic. For instance, in this case, when R is F -finite and C is a semidualizing R -complex, we prove that the following conditions are equivalent: (i) C is a dualizing R -complex; (ii) C 𝐑 Hom R ( n R , C ) for some n > 0 ; (iii) G C -dim n R < and C is derived...

Explicit birational geometry of threefolds of general type, I

Jungkai A. Chen, Meng Chen (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let V be a complex nonsingular projective 3-fold of general type. We prove P 12 ( V ) : = dim H 0 ( V , 12 K V ) &gt; 0 and P m 0 ( V ) &gt; 1 for some positive integer m 0 24 . A direct consequence is the birationality of the pluricanonical map ϕ m for all m 126 . Besides, the canonical volume Vol ( V ) has a universal lower bound ν ( 3 ) 1 63 · 126 2 .

On open maps and related functions over the Salbany compactification

Mbekezeli Nxumalo (2024)

Archivum Mathematicum

Similarity:

Given a topological space X , let 𝒰 X and η X : X 𝒰 X denote, respectively, the Salbany compactification of X and the compactification map called the Salbany map of X . For every continuous function f : X Y , there is a continuous function 𝒰 f : 𝒰 X 𝒰 Y , called the Salbany lift of f , satisfying ( 𝒰 f ) η X = η Y f . If a continuous function f : X Y has a stably compact codomain Y , then there is a Salbany extension F : 𝒰 X Y of f , not necessarily unique, such that F η X = f . In this paper, we give a condition on a space such that its Salbany map is open. In...

On critical values of twisted Artin L -functions

Peng-Jie Wong (2017)

Czechoslovak Mathematical Journal

Similarity:

We give a simple proof that critical values of any Artin L -function attached to a representation ρ with character χ ρ are stable under twisting by a totally even character χ , up to the dim ρ -th power of the Gauss sum related to χ and an element in the field generated by the values of χ ρ and χ over . This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.

On the Separation Dimension of K ω

Yasunao Hattori, Jan van Mill (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove that t r t K ω > ω + 1 , where trt stands for the transfinite extension of Steinke’s separation dimension. This answers a question of Chatyrko and Hattori.

On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets

Juan Rivera-Letelier (2001)

Fundamenta Mathematicae

Similarity:

Given d ≥ 2 consider the family of polynomials P c ( z ) = z d + c for c ∈ ℂ. Denote by J c the Julia set of P c and let d = c | J c i s c o n n e c t e d be the connectedness locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters c d : those for which the critical point 0 is not recurrent by P c and without parabolic cycles. The Hausdorff dimension of J c , denoted by H D ( J c ) , does not depend continuously on c at such c d ; on the other hand the function c H D ( J c ) is analytic in - d . Our first result asserts that there is still some...

Maps with dimensionally restricted fibers

Vesko Valov (2011)

Colloquium Mathematicae

Similarity:

We prove that if f: X → Y is a closed surjective map between metric spaces such that every fiber f - 1 ( y ) belongs to a class S of spaces, then there exists an F σ -set A ⊂ X such that A ∈ S and d i m f - 1 ( y ) A = 0 for all y ∈ Y. Here, S can be one of the following classes: (i) M: e-dim M ≤ K for some CW-complex K; (ii) C-spaces; (iii) weakly infinite-dimensional spaces. We also establish that if S = M: dim M ≤ n, then dim f ∆ g ≤ 0 for almost all g C ( X , n + 1 ) .

More on exposed points and extremal points of convex sets in n and Hilbert space

Stoyu T. Barov (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let 𝕍 be a separable real Hilbert space, k with k < dim 𝕍 , and let B be convex and closed in 𝕍 . Let 𝒫 be a collection of linear k -subspaces of 𝕍 . A point w B is called exposed by 𝒫 if there is a P 𝒫 so that ( w + P ) B = { w } . We show that, under some natural conditions, B can be reconstituted as the convex hull of the closure of all its exposed by 𝒫 points whenever 𝒫 is dense and G δ . In addition, we discuss the question when the set of exposed by some 𝒫 points forms a G δ -set.

A compactness result for polyharmonic maps in the critical dimension

Shenzhou Zheng (2016)

Czechoslovak Mathematical Journal

Similarity:

For n = 2 m 4 , let Ω n be a bounded smooth domain and 𝒩 L a compact smooth Riemannian manifold without boundary. Suppose that { u k } W m , 2 ( Ω , 𝒩 ) is a sequence of weak solutions in the critical dimension to the perturbed m -polyharmonic maps d d t | t = 0 E m ( Π ( u + t ξ ) ) = 0 with Φ k 0 in ( W m , 2 ( Ω , 𝒩 ) ) * and u k u weakly in W m , 2 ( Ω , 𝒩 ) . Then u is an m -polyharmonic map. In particular, the space of m -polyharmonic maps is sequentially compact for the weak- W m , 2 topology.