Displaying similar documents to “A new way to iterate Brzeziński crossed products”

Tensor products of higher almost split sequences in subcategories

Xiaojian Lu, Deren Luo (2023)

Czechoslovak Mathematical Journal

Similarity:

We introduce the algebras satisfying the ( , n ) condition. If Λ , Γ are algebras satisfying the ( , n ) , ( , m ) condition, respectively, we give a construction of ( m + n ) -almost split sequences in some subcategories ( ) ( i 0 , j 0 ) of mod ( Λ Γ ) by tensor products and mapping cones. Moreover, we prove that the tensor product algebra Λ Γ satisfies the ( ( ) ( i 0 , j 0 ) , n + m ) condition for some integers i 0 , j 0 ; this construction unifies and extends the work of A. Pasquali (2017), (2019).

Some isomorphic properties in projective tensor products

Ioana Ghenciu (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give sufficient conditions implying that the projective tensor product of two Banach spaces X and Y has the p -sequentially Right and the p - L -limited properties, 1 p < .

General Haar systems and greedy approximation

Anna Kamont (2001)

Studia Mathematica

Similarity:

We show that each general Haar system is permutatively equivalent in L p ( [ 0 , 1 ] ) , 1 < p < ∞, to a subsequence of the classical (i.e. dyadic) Haar system. As a consequence, each general Haar system is a greedy basis in L p ( [ 0 , 1 ] ) , 1 < p < ∞. In addition, we give an example of a general Haar system whose tensor products are greedy bases in each L p ( [ 0 , 1 ] d ) , 1 < p < ∞, d ∈ ℕ. This is in contrast to [11], where it has been shown that the tensor products of the dyadic Haar system are not greedy bases...

Linear natural operators lifting p -vectors to tensors of type ( q , 0 ) on Weil bundles

Jacek Dębecki (2016)

Czechoslovak Mathematical Journal

Similarity:

We give a classification of all linear natural operators transforming p -vectors (i.e., skew-symmetric tensor fields of type ( p , 0 ) ) on n -dimensional manifolds M to tensor fields of type ( q , 0 ) on T A M , where T A is a Weil bundle, under the condition that p 1 , n p and n q . The main result of the paper states that, roughly speaking, each linear natural operator lifting p -vectors to tensor fields of type ( q , 0 ) on T A is a sum of operators obtained by permuting the indices of the tensor products of linear natural...

Bicrossed products of generalized Taft algebra and group algebras

Dingguo Wang, Xiangdong Cheng, Daowei Lu (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group generated by a set of finite order elements. We prove that any bicrossed product H m , d ( q ) k [ G ] between the generalized Taft algebra H m , d ( q ) and group algebra k [ G ] is actually the smash product H m , d ( q ) k [ G ] . Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of G . As an application, the classification of H m , d ( q ) k [ C n 1 × C n 2 ] is completely presented by generators and relations, where C n denotes the n -cyclic group.

Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers

Hajime Kaneko, Takeshi Kurosawa, Yohei Tachiya, Taka-aki Tanaka (2015)

Acta Arithmetica

Similarity:

Let d ≥ 2 be an integer. In 2010, the second, third, and fourth authors gave necessary and sufficient conditions for the infinite products k = 1 U d k - a i ( 1 + ( a i ) / ( U d k ) ) (i=1,...,m) or k = 1 V d k - a i ( 1 + ( a i ) ( V d k ) (i=1,...,m) to be algebraically dependent, where a i are non-zero integers and U n and V n are generalized Fibonacci numbers and Lucas numbers, respectively. The purpose of this paper is to relax the condition on the non-zero integers a 1 , . . . , a m to non-zero real algebraic numbers, which gives new cases where the infinite products above are algebraically...

The classical subspaces of the projective tensor products of p and C(α) spaces, α < ω₁

Elói Medina Galego, Christian Samuel (2013)

Studia Mathematica

Similarity:

We completely determine the q and C(K) spaces which are isomorphic to a subspace of p ̂ π C ( α ) , the projective tensor product of the classical p space, 1 ≤ p < ∞, and the space C(α) of all scalar valued continuous functions defined on the interval of ordinal numbers [1,α], α < ω₁. In order to do this, we extend a result of A. Tong concerning diagonal block matrices representing operators from p to ℓ₁, 1 ≤ p < ∞. The first main theorem is an extension of a result of E. Oja and states...

On twisted group algebras of OTP representation type

Leonid F. Barannyk, Dariusz Klein (2012)

Colloquium Mathematicae

Similarity:

Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and G = G p × B is a finite group, where G p is a p-group and B is a p’-group. Denote by S λ G the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for S λ G to be of OTP representation type, in the sense that every indecomposable S λ G -module is isomorphic to the outer tensor product V W of an indecomposable S λ G p -module V and an irreducible...

On twisted group algebras of OTP representation type over the ring of p-adic integers

Leonid F. Barannyk, Dariusz Klein (2016)

Colloquium Mathematicae

Similarity:

Let ̂ p be the ring of p-adic integers, U ( ̂ p ) the unit group of ̂ p and G = G p × B a finite group, where G p is a p-group and B is a p’-group. Denote by ̂ p λ G the twisted group algebra of G over ̂ p with a 2-cocycle λ Z ² ( G , U ( ̂ p ) ) . We give necessary and sufficient conditions for ̂ p λ G to be of OTP representation type, in the sense that every indecomposable ̂ p λ G -module is isomorphic to the outer tensor product V W of an indecomposable ̂ p λ G p -module V and an irreducible ̂ p λ B -module W.

The bicrossed products of H 4 and H 8

Daowei Lu, Yan Ning, Dingguo Wang (2020)

Czechoslovak Mathematical Journal

Similarity:

Let H 4 and H 8 be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H 8 and H 4 (equivalently, any bicrossed product between the Hopf algebras H 8 and H 4 ) must be isomorphic to one of the following four Hopf algebras: H 8 H 4 , H 32 , 1 , H 32 , 2 , H 32 , 3 . The set of all matched pairs ( H 8 , H 4 , , ) is explicitly described, and then the associated bicrossed product is given by generators and relations.

Controlling products of currents by higher powers of plurisubharmonic functions

Ahmad K. Al Abdulaali, Hassine El Mir (2020)

Czechoslovak Mathematical Journal

Similarity:

We discuss the existence of the current g k T , k for positive and closed currents T and unbounded plurisubharmonic functions g . Furthermore, a new type of weighted Lelong number is introduced under the name of weight k Lelong number.

Some identities involving differences of products of generalized Fibonacci numbers

Curtis Cooper (2015)

Colloquium Mathematicae

Similarity:

Melham discovered the Fibonacci identity F n + 1 F n + 2 F n + 6 - F ³ n + 3 = ( - 1 ) F . He then considered the generalized sequence Wₙ where W₀ = a, W₁ = b, and W = p W n - 1 + q W n - 2 and a, b, p and q are integers and q ≠ 0. Letting e = pab - qa² - b², he proved the following identity: W n + 1 W n + 2 W n + 6 - W ³ n + 3 = e q n + 1 ( p ³ W n + 2 - q ² W n + 1 ) . There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould: F F n + 4 F n + 5 - F ³ n + 3 = ( - 1 ) n + 1 F n + 6 . We prove similar identities. For example, a generalization of Fairgrieve and Gould’s identity is W W n + 4 W n + 5 - W ³ n + 3 = e q ( p ³ W n + 4 - q W n + 5 ) .

Isomorphisms of Cartesian Products of ℓ-Power Series Spaces

E. Karapınar, M. Yurdakul, V. Zahariuta (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ℓ be a Banach sequence space with a monotone norm · , in which the canonical system ( e i ) is a normalized symmetric basis. We give a complete isomorphic classification of Cartesian products E 0 ( a ) × E ( b ) where E 0 ( a ) = K ( e x p ( - p - 1 a i ) ) and E ( b ) = K ( e x p ( p a i ) ) are finite and infinite ℓ-power series spaces, respectively. This classification is the generalization of the results by Chalov et al. [Studia Math. 137 (1999)] and Djakov et al. [Michigan Math. J. 43 (1996)] by using the method of compound linear topological invariants developed by...

On sums and products in a field

Guang-Liang Zhou, Zhi-Wei Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

We study sums and products in a field. Let F be a field with ch ( F ) 2 , where ch ( F ) is the characteristic of F . For any integer k 4 , we show that any x F can be written as a 1 + + a k with a 1 , , a k F and a 1 a k = 1 , and that for any α F { 0 } we can write every x F as a 1 a k with a 1 , , a k F and a 1 + + a k = α . We also prove that for any x F and k { 2 , 3 , } there are a 1 , , a 2 k F such that a 1 + + a 2 k = x = a 1 a 2 k .