Displaying similar documents to “The composite of irreducible morphisms in regular components”

The multiplicity problem for indecomposable decompositions of modules over a finite-dimensional algebra. Algorithms and a computer algebra approach

Piotr Dowbor, Andrzej Mróz (2007)

Colloquium Mathematicae

Similarity:

Given a module M over an algebra Λ and a complete set of pairwise nonisomorphic indecomposable Λ-modules, the problem of determining the vector m ( M ) = ( m X ) X such that M X X m X is studied. A general method of finding the vectors m(M) is presented (Corollary 2.1, Theorem 2.2 and Corollary 2.3). It is discussed and applied in practice for two classes of algebras: string algebras of finite representation type and hereditary algebras of type ̃ p , q . In the second case detailed algorithms are given (Algorithms 4.5...

Category 𝒪 for quantum groups

Henning Haahr Andersen, Volodymyr Mazorchuk (2015)

Journal of the European Mathematical Society

Similarity:

In this paper we study the BGG-categories 𝒪 q associated to quantum groups. We prove that many properties of the ordinary BGG-category 𝒪 for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition for both simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan-Lusztig conjectures for 𝒪 and for finite dimensional U q -modules we are able...

Coalgebras, comodules, pseudocompact algebras and tame comodule type

Daniel Simson (2001)

Colloquium Mathematicae

Similarity:

We develop a technique for the study of K-coalgebras and their representation types by applying a quiver technique and topologically pseudocompact modules over pseudocompact K-algebras in the sense of Gabriel [17], [19]. A definition of tame comodule type and wild comodule type for K-coalgebras over an algebraically closed field K is introduced. Tame and wild coalgebras are studied by means of their finite-dimensional subcoalgebras. A weak version of the tame-wild dichotomy theorem of...

Top-stable and layer-stable degenerations and hom-order

S. O. Smalø, A. Valenta (2007)

Colloquium Mathematicae

Similarity:

Using geometrical methods, Huisgen-Zimmermann showed that if M is a module with simple top, then M has no proper degeneration M < d e g N such that t M / t + 1 M t N / t + 1 N for all t. Given a module M with square-free top and a projective cover P, she showed that d i m k H o m ( M , M ) = d i m k H o m ( P , M ) if and only if M has no proper degeneration M < d e g N where M/M ≃ N/N. We prove here these results in a more general form, for hom-order instead of degeneration-order, and we prove them algebraically. The results of Huisgen-Zimmermann follow as consequences from...

Separable functors for the category of Doi Hom-Hopf modules

Shuangjian Guo, Xiaohui Zhang (2016)

Colloquium Mathematicae

Similarity:

Let ̃ ( k ) ( H ) A C be the category of Doi Hom-Hopf modules, ̃ ( k ) A be the category of A-Hom-modules, and F be the forgetful functor from ̃ ( k ) ( H ) A C to ̃ ( k ) A . The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.

The multiplicity problem for indecomposable decompositions of modules over domestic canonical algebras

Piotr Dowbor, Andrzej Mróz (2008)

Colloquium Mathematicae

Similarity:

Given a module M over a domestic canonical algebra Λ and a classifying set X for the indecomposable Λ-modules, the problem of determining the vector m ( M ) = ( m x ) x X X such that M x X X x m x is studied. A precise formula for d i m k H o m Λ ( M , X ) , for any postprojective indecomposable module X, is computed in Theorem 2.3, and interrelations between various structures on the set of all postprojective roots are described in Theorem 2.4. It is proved in Theorem 2.2 that a general method of finding vectors m(M) presented by the authors...

On the composition structure of the twisted Verma modules for 𝔰𝔩 ( 3 , )

Libor Křižka, Petr Somberg (2015)

Archivum Mathematicum

Similarity:

We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra 𝔰𝔩 ( 3 , ) , including the explicit structure of singular vectors for both 𝔰𝔩 ( 3 , ) and one of its Lie subalgebras 𝔰𝔩 ( 2 , ) , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as D -modules on the Schubert cells in the full flag manifold for SL ( 3 , ) .

A cluster algebra approach to q -characters of Kirillov–Reshetikhin modules

David Hernandez, Bernard Leclerc (2016)

Journal of the European Mathematical Society

Similarity:

We describe a cluster algebra algorithm for calculating q -characters of Kirillov–Reshetikhin modules for any untwisted quantum affine algebra U q ( 𝔤 ^ ) . This yields a geometric q -character formula for tensor products of Kirillov–Reshetikhin modules. When 𝔤 is of type A , D , E , this formula extends Nakajima’s formula for q -characters of standard modules in terms of homology of graded quiver varieties.

Non-orbicular modules for Galois coverings

Piotr Dowbor (2001)

Colloquium Mathematicae

Similarity:

Given a group G of k-linear automorphisms of a locally bounded k-category R, the problem of existence and construction of non-orbicular indecomposable R/G-modules is studied. For a suitable finite sequence B of G-atoms with a common stabilizer H, a representation embedding Φ B : I - s p r ( H ) m o d ( R / G ) , which yields large families of non-orbicular indecomposable R/G-modules, is constructed (Theorem 3.1). It is proved that if a G-atom B with infinite cyclic stabilizer admits a non-trivial left Kan extension B̃ with...

Non-weight modules over the super Schrödinger algebra

Xinyue Wang, Liangyun Chen, Yao Ma (2024)

Czechoslovak Mathematical Journal

Similarity:

We construct a family of non-weight modules which are free U ( 𝔥 ) -modules of rank 2 over the N = 1 super Schrödinger algebra in ( 1 + 1 ) -dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free U ( 𝔥 ) -modules of rank 2 over 𝔬𝔰𝔭 ( 1 | 2 ) are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.

Endotrivial modules over groups with quaternion or semi-dihedral Sylow 2-subgroup

Jon F. Carlson, Nadia Mazza, Jacques Thévenaz (2013)

Journal of the European Mathematical Society

Similarity:

Let G be a finite group with a Sylow 2-subgroup P which is either quaternion or semi-dihedral. Let k be an algebraically closed field of characteristic 2. We prove the existence of exotic endotrivial k G -modules, whose restrictions to P are isomorphic to the direct sum of the known exotic endotrivial k P -modules and some projective modules. This provides a description of the group T ( G ) of endotrivial k G -modules.

On the K -theory and Hattori-Stallings traces of minimal primitive factors of enveloping algebras of semisimple Lie algebras : the singular case

Patrick Polo (1995)

Annales de l'institut Fourier

Similarity:

Let G be a semisimple complex algebraic group and X its flag variety. Let 𝔤 = Lie ( G ) and let U be its enveloping algebra. Let 𝔥 be a Cartan subalgebra of 𝔤 . For μ 𝔥 * , let J μ be the corresponding minimal primitive ideal, let U μ = U / J μ , and let 𝒯 U μ : K 0 ( U m u ) be the Hattori-Stallings trace. Results of Hodges suggest to study this map as a step towards a classification, up to isomorphism or Morita equivalence, of the -algebras U μ . When μ is regular, Hodges has shown that K 0 ( U μ ) K 0 ( X ) . In this case K 0 ( U μ ) is generated by the classes corresponding...

Base change for Picard-Vessiot closures

Andy R. Magid (2011)

Banach Center Publications

Similarity:

The differential automorphism group, over F, Π₁(F₁) of the Picard-Vessiot closure F₁ of a differential field F is a proalgebraic group over the field C F of constants of F, which is assumed to be algebraically closed of characteristic zero, and its category of C F modules is equivalent to the category of differential modules over F. We show how this group and the category equivalence behave under a differential extension E ⊃ F, where C E is also algebraically closed.

Derived endo-discrete artin algebras

Raymundo Bautista (2006)

Colloquium Mathematicae

Similarity:

Let Λ be an artin algebra. We prove that for each sequence ( h i ) i of non-negative integers there are only a finite number of isomorphism classes of indecomposables X b ( Λ ) , the bounded derived category of Λ, with l e n g t h E ( X ) H i ( X ) = h i for all i ∈ ℤ and E(X) the endomorphism ring of X in b ( Λ ) if and only if b ( M o d Λ ) , the bounded derived category of the category M o d Λ of all left Λ-modules, has no generic objects in the sense of [4].

Commutative rings whose certain modules decompose into direct sums of cyclic submodules

Farid Kourki, Rachid Tribak (2023)

Czechoslovak Mathematical Journal

Similarity:

We provide some characterizations of rings R for which every (finitely generated) module belonging to a class 𝒞 of R -modules is a direct sum of cyclic submodules. We focus on the cases, where the class 𝒞 is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.

On commutative rings whose maximal ideals are idempotent

Farid Kourki, Rachid Tribak (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for a commutative ring R , every noetherian (artinian) R -module is quasi-injective if and only if every noetherian (artinian) R -module is quasi-projective if and only if the class of noetherian (artinian) R -modules is socle-fine if and only if the class of noetherian (artinian) R -modules is radical-fine if and only if every maximal ideal of R is idempotent.