-spaces and -spaces
Nguyen To Nhu (1979)
Colloquium Mathematicae
Similarity:
Nguyen To Nhu (1979)
Colloquium Mathematicae
Similarity:
N. J. Kalton (2011)
Fundamenta Mathematicae
Similarity:
We show that there is no uniformly continuous selection of the quotient map relative to the unit ball. We use this to construct an answer to a problem of Benyamini and Lindenstrauss; there is a Banach space X such that there is a no Lipschitz retraction of X** onto X; in fact there is no uniformly continuous retraction from onto .
Alberto Bressan, Agostino Cortesi (1986)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
Si dimostra che ogni funzione multivoca lipschitziana con costante di Lipschitz , definita su un sottoinsieme di uno spazio di Hilbert a valori compatti e convessi in , può essere estesa su tutto ad una funzione multivoca lipschitziana con costante minore di 7 nM. In generale, non esistono invece estensioni aventi la stessa costante di Lipschitz .
Wilhelmina Smajdor (2010)
Annales Polonici Mathematici
Similarity:
Let I ⊂ ℝ be an interval, Y be a normed linear space and Z be a Banach space. We investigate the Banach space Lip₂(I,Z) of all functions ψ: I → Z such that , where [r,s,t;ψ]:= ((s-r)ψ(t)+(t-s)ψ(r)-(t-r)ψ(s))/((t-r)(t-s)(s-r)). We show that ψ ∈ Lip₂(I,Z) if and only if ψ is differentiable and its derivative ψ’ is Lipschitzian. Suppose the composition operator N generated by h: I × Y → Z, (Nφ)(t):= h(t,φ(t)), maps the set (I,Y) of all affine functions φ: I → Y into Lip₂(I,Z). We prove...
Vanda Fülöp (2006)
Colloquium Mathematicae
Similarity:
Denote by the sum of a double sine series with nonnegative coefficients. We present necessary and sufficient coefficient conditions in order that belongs to the two-dimensional multiplicative Lipschitz class Lip(α,β) for some 0 < α ≤ 1 and 0 < β ≤ 1. Our theorems are extensions of the corresponding theorems by Boas for single sine series.
Ferenc Móricz (2009)
Colloquium Mathematicae
Similarity:
We extend the classical theorems of I. I. Privalov and A. Zygmund from single to multiple conjugate functions in terms of the multiplicative modulus of continuity. A remarkable corollary is that if a function f belongs to the multiplicative Lipschitz class for some and its marginal functions satisfy for some uniformly in the indicated variables , 1 ≤ l ≤ N, then for each choice of with or 1 for 1 ≤ l ≤ N.
Jakub Duda (2009)
Fundamenta Mathematicae
Similarity:
We find conditions on a real function f:[a,b] → ℝ equivalent to being Lebesgue equivalent to an n-times differentiable function (n ≥ 2); a simple solution in the case n = 2 appeared in an earlier paper. For that purpose, we introduce the notions of and functions, which play analogous rôles for the nth order differentiability to the classical notion of a VBG⁎ function for the first order differentiability, and the classes and (introduced by Preiss and Laczkovich) for Cⁿ smoothness....
Ying Xiong, Lifeng Xi (2009)
Studia Mathematica
Similarity:
This paper studies the geometric structure of graph-directed sets from the point of view of Lipschitz equivalence. It is proved that if and are dust-like graph-directed sets satisfying the transitivity condition, then and are Lipschitz equivalent, and and are quasi-Lipschitz equivalent when they have the same Hausdorff dimension.
Michael Dymond (2017)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A subset of is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function . We show that any universal differentiability set contains a ‘kernel’ in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets.
Silvano Delladio (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
We prove a result about the rectifiability of class of the set of regular values (in the sense of Clarke) of a Lipschitz map with
Alberto Bressan, Agostino Cortesi (1986)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
Similarity:
Si dimostra che ogni funzione multivoca lipschitziana con costante di Lipschitz , definita su un sottoinsieme di uno spazio di Hilbert a valori compatti e convessi in , può essere estesa su tutto ad una funzione multivoca lipschitziana con costante minore di 7 nM. In generale, non esistono invece estensioni aventi la stessa costante di Lipschitz .
Witold Marciszewski (2003)
Studia Mathematica
Similarity:
We give a characterization of compact spaces K such that the Banach space C(K) is isomorphic to the space c₀(Γ) for some set Γ. As an application we show that there exists an Eberlein compact space K of weight and with the third derived set empty such that the space C(K) is not isomorphic to any c₀(Γ). For this compactum K, the spaces C(K) and are examples of weakly compactly generated (WCG) Banach spaces which are Lipschitz isomorphic but not isomorphic.
F. Abtahi, E. Byabani, A. Rejali (2019)
Archivum Mathematicum
Similarity:
Let be a metric space and . We study homological properties and different types of amenability of Lipschitz algebras and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of . Finally, some results concerning...
T. Gaspari (2002)
Studia Mathematica
Similarity:
We study the set f’(X) = f’(x): x ∈ X when f:X → ℝ is a differentiable bump. We first prove that for any C²-smooth bump f: ℝ² → ℝ the range of the derivative of f must be the closure of its interior. Next we show that if X is an infinite-dimensional separable Banach space with a -smooth bump b:X → ℝ such that is finite, then any connected open subset of X* containing 0 is the range of the derivative of a -smooth bump. We also study the finite-dimensional case which is quite different....
Piotr Niemiec (2009)
Studia Mathematica
Similarity:
It is proved (independently of the result of Holmes [Fund. Math. 140 (1992)]) that the dual space of the uniform closure of the linear span of the maps x ↦ d(x,a) - d(x,b), where d is the metric of the Urysohn space of diameter r, is (isometrically if r = +∞) isomorphic to the space of equivalence classes of all real-valued Lipschitz maps on . The space of all signed (real-valued) Borel measures on is isometrically embedded in the dual space of and it is shown that the image...
Daniel Azagra, Mar Jiménez-Sevilla (2002)
Bulletin de la Société Mathématique de France
Similarity:
We study the size of the sets of gradients of bump functions on the Hilbert space , and the related question as to how small the set of tangent hyperplanes to a smooth bounded starlike body in can be. We find that those sets can be quite small. On the one hand, the usual norm of the Hilbert space can be uniformly approximated by smooth Lipschitz functions so that the cones generated by the ranges of its derivatives have empty interior. This implies that there are smooth...
Jill Pipher (1992-1993)
Publications mathématiques et informatique de Rennes
Similarity:
Constantin Costara, Dušan Repovš (2010)
Studia Mathematica
Similarity:
We prove that if F is a Lipschitz map from the set of all complex n × n matrices into itself with F(0) = 0 such that given any x and y we know that F(x) - F(y) and x-y have at least one common eigenvalue, then either or for all x, for some invertible n × n matrix u. We arrive at the same conclusion by supposing F to be of class ¹ on a domain in ℳₙ containing the null matrix, instead of Lipschitz. We also prove that if F is of class ¹ on a domain containing the null matrix satisfying...
Luděk Zajíček (2023)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Let be Banach spaces and a real function on . Let be the set of all points at which is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if are Asplund spaces and is continuous (respectively Lipschitz) on , then is a first category set (respectively a -upper porous set). We also prove that if , are separable Banach spaces and is a Lipschitz mapping, then there exists a -upper porous set such that is Fréchet differentiable...
Amir Sahami, Mohammad R. Omidi, Eghbal Ghaderi, Hamzeh Zangeneh (2020)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space , the Lipschitz algebras and are approximately biflat if and only if is finite, provided that . We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.
Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)
Banach Center Publications
Similarity:
Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put . Consider the integral functional G defined on some non--type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued...
Naotsugu Chinen (2015)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
By , , we denote the -th symmetric product of a metric space as the space of the non-empty finite subsets of with at most elements endowed with the Hausdorff metric . In this paper we shall describe that every isometry from the -th symmetric product into itself is induced by some isometry from into itself, where is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the -th symmetric product of the Euclidean space up to bi-Lipschitz equivalence...
R. Flume (1979)
Recherche Coopérative sur Programme n°25
Similarity:
Jan Rozendaal, Fedor Sukochev, Anna Tomskova (2016)
Studia Mathematica
Similarity:
Let X, Y be Banach spaces and let (X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on (X,Y) and apply this theory to obtain commutator estimates of the form for a large class of functions f, where A ∈ (X), B ∈ (Y) are scalar type operators and S ∈ (X,Y). In particular, we establish this estimate for f(t): = |t| and for diagonalizable operators on and for p < q. We also study the estimate above in the setting of Banach...
J. Marshall Ash, Hajrudin Fejzić (2005)
Studia Mathematica
Similarity:
Let n be a nonnegative integer and let u ∈ (n,n+1]. We say that f is u-times Peano bounded in the approximate (resp. , 1 ≤ p ≤ ∞) sense at if there are numbers , |α| ≤ n, such that is in the approximate (resp. ) sense as h → 0. Suppose f is u-times Peano bounded in either the approximate or sense at each point of a bounded measurable set E. Then for every ε > 0 there is a perfect set Π ⊂ E and a smooth function g such that the Lebesgue measure of E∖Π is less than ε and...
Grzegorz Bartuzel, Andrzej Fryszkowski (2014)
Banach Center Publications
Similarity:
In the paper we give an analogue of the Filippov Lemma for the fourth order differential inclusions y = y”” - (A² + B²)y” + A²B²y ∈ F(t,y), (*) with the initial conditions y(0) = y’(0) = y”(0) = y”’(0) = 0, (**) where the matrices are commutative and the multifunction is Lipschitz continuous in y with a t-independent constant l < ||A||²||B||². Main theorem. Assume that y₀ ∈ W4,1 a.e. in [0,1], where p₀ ∈ L¹[0,1]. Then there exists a solution y ∈ W4,1 of (*)...
Charles E. C Cleaver (1973)
Colloquium Mathematicae
Similarity:
Joram Lindenstrauss, David Preiss (2000)
Journal of the European Mathematical Society
Similarity:
We give a relatively simple (self-contained) proof that every real-valued Lipschitz function on (or more generally on an Asplund space) has points of Fréchet differentiability. Somewhat more generally, we show that a real-valued Lipschitz function on a separable Banach space has points of Fréchet differentiability provided that the closure of the set of its points of Gâteaux differentiability is norm separable.
S. Rolewicz (2006)
Studia Mathematica
Similarity:
Let (X,||·||) be a separable real Banach space. Let f be a real-valued strongly α(·)-paraconvex function defined on an open convex subset Ω ⊂ X, i.e. such that . Then there is a dense -set such that f is Gateaux differentiable at every point of .
Guy Métivier (2014)
Journal de l’École polytechnique — Mathématiques
Similarity:
The Cauchy problem for first order system is known to be well-posed in when it admits a microlocal symmetrizer which is smooth in and Lipschitz continuous in . This paper contains three main results. First we show that a Lipschitz smoothness globally in is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of having the same smoothness. This notion was first introduced in []. This is the key point to prove...
Wojciech Zygmunt (2016)
Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica
Similarity:
In this note we shall prove that for a continuous function , where , the paratingent of at is a non-empty and compact set in if and only if satisfies Lipschitz condition in a neighbourhood of . Moreover, in this case the paratingent is a connected set.
Thomas Vils Pedersen (2004)
Studia Mathematica
Similarity:
For 0 < γ ≤ 1, let be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let be the closed ideal in consisting of those functions for which (i) f = 0 on E, (ii) as d(z,E),d(w,E) → 0, (iii) . Also, for a closed ideal I in , let = z ∈ : f(z) = 0 for every f ∈ I and let be the greatest common divisor of the inner parts of non-zero functions...