Displaying similar documents to “A note on Sierpiński's problem related to triangular numbers”

Composite rational functions expressible with few terms

Clemens Fuchs, Umberto Zannier (2012)

Journal of the European Mathematical Society

Similarity:

We consider a rational function f which is ‘lacunary’ in the sense that it can be expressed as the ratio of two polynomials (not necessarily coprime) having each at most a given number of terms. Then we look at the possible decompositions f ( x ) = g ( h ( x ) ) , where g , h are rational functions of degree larger than 1. We prove that, apart from certain exceptional cases which we completely describe, the degree of g is bounded only in terms of (and we provide explicit bounds). This supports and quantifies...

Manin’s and Peyre’s conjectures on rational points and adelic mixing

Alex Gorodnik, François Maucourant, Hee Oh (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let X be the wonderful compactification of a connected adjoint semisimple group G defined over a number field K . We prove Manin’s conjecture on the asymptotic (as T ) of the number of K -rational points of X of height less than T , and give an explicit construction of a measure on X ( 𝔸 ) , generalizing Peyre’s measure, which describes the asymptotic distribution of the rational points 𝐆 ( K ) on X ( 𝔸 ) . Our approach is based on the mixing property of L 2 ( 𝐆 ( K ) 𝐆 ( 𝔸 ) ) which we obtain with a rate of convergence. ...

A variety of Euler's sum of powers conjecture

Tianxin Cai, Yong Zhang (2021)

Czechoslovak Mathematical Journal

Similarity:

We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system n = a 1 + a 2 + + a s - 1 , a 1 a 2 a s - 1 ( a 1 + a 2 + + a s - 1 ) = b s has positive integer or rational solutions n , b , a i , i = 1 , 2 , , s - 1 , s 3 . Using the theory of elliptic curves, we prove that it has no positive integer solution for s = 3 , but there are infinitely many positive integers n such that it has a positive integer solution for s 4 . As a corollary, for s 4 and any positive integer n , the above Diophantine system has a positive rational solution. Meanwhile, we give conditions...

Towards Bauer's theorem for linear recurrence sequences

Mariusz Skałba (2003)

Colloquium Mathematicae

Similarity:

Consider a recurrence sequence ( x k ) k of integers satisfying x k + n = a n - 1 x k + n - 1 + . . . + a x k + 1 + a x k , where a , a , . . . , a n - 1 are fixed and a₀ ∈ -1,1. Assume that x k > 0 for all sufficiently large k. If there exists k₀∈ ℤ such that x k < 0 then for each negative integer -D there exist infinitely many rational primes q such that q | x k for some k ∈ ℕ and (-D/q) = -1.

Extensions of the Cugiani-Mahler theorem

Yann Bugeaud (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In 1955, Roth established that if ξ is an irrational number such that there are a positive real number ε and infinitely many rational numbers p / q with q 1 and | ξ - p / q | &lt; q - 2 - ε , then ξ is transcendental. A few years later, Cugiani obtained the same conclusion with ε replaced by a function q ε ( q ) that decreases very slowly to zero, provided that the sequence of rational solutions to | ξ - p / q | &lt; q - 2 - ε ( q ) is sufficiently dense, in a suitable sense. We give an alternative, and much simpler, proof of Cugiani’s Theorem and extend it...

Homeomorphism groups of Sierpiński carpets and Erdős space

Jan J. Dijkstra, Dave Visser (2010)

Fundamenta Mathematicae

Similarity:

Erdős space is the “rational” Hilbert space, that is, the set of vectors in ℓ² with all coordinates rational. Erdős proved that is one-dimensional and homeomorphic to its own square × , which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of . Let M n + 1 , n ∈ ℕ, be the n-dimensional Menger continuum in n + 1 , also known as the n-dimensional Sierpiński carpet, and let D be a countable dense subset of M n + 1 . We consider the topological group...

Varieties of minimal rational tangents of codimension 1

Jun-Muk Hwang (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  X be a uniruled projective manifold and let  x be a general point. The main result of [2] says that if the ( - K X ) -degrees (i.e., the degrees with respect to the anti-canonical bundle of  X ) of all rational curves through x are at least dim X + 1 , then X is a projective space. In this paper, we study the structure of  X when the ( - K X ) -degrees of all rational curves through x are at least dim X . Our study uses the projective variety 𝒞 x T x ( X ) , called the VMRT at  x , defined as the union of tangent directions to the...

Characteristic Exponents of Rational Functions

Anna Zdunik (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We consider two characteristic exponents of a rational function f:ℂ̂ → ℂ̂ of degree d ≥ 2. The exponent χ a ( f ) is the average of log∥f’∥ with respect to the measure of maximal entropy. The exponent χ m ( f ) can be defined as the maximal characteristic exponent over all periodic orbits of f. We prove that χ a ( f ) = χ m ( f ) if and only if f(z) is conformally conjugate to z z ± d .

On τ -extending modules

Y. Talebi, R. Mohammadi (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we introduce the concept of τ -extending modules by τ -rational submodules and study some properties of such modules. It is shown that the set of all τ -rational left ideals of R R is a Gabriel filter. An R -module M is called τ -extending if every submodule of M is τ -rational in a direct summand of M . It is proved that M is τ -extending if and only if M = R e j M E ( R / τ ( R ) ) N , such that N is a τ -extending submodule of M . An example is given to show that the direct sum of τ -extending modules need not...

On sums and products in a field

Guang-Liang Zhou, Zhi-Wei Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

We study sums and products in a field. Let F be a field with ch ( F ) 2 , where ch ( F ) is the characteristic of F . For any integer k 4 , we show that any x F can be written as a 1 + + a k with a 1 , , a k F and a 1 a k = 1 , and that for any α F { 0 } we can write every x F as a 1 a k with a 1 , , a k F and a 1 + + a k = α . We also prove that for any x F and k { 2 , 3 , } there are a 1 , , a 2 k F such that a 1 + + a 2 k = x = a 1 a 2 k .

The supports of higher bifurcation currents

Romain Dujardin (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let ( f λ ) λ Λ be a holomorphic family of rational mappings of degree d on 1 ( ) , with k marked critical points c 1 , ... , c k . To this data is associated a closed positive current T 1 T k of bidegree ( k , k ) on Λ , aiming to describe the simultaneous bifurcations of the marked critical points. In this note we show that the support of this current is accumulated by parameters at which c 1 , ... , c k eventually fall on repelling cycles. Together with results of Buff, Epstein and Gauthier, this leads to a complete characterization of Supp ( T 1 T k ) . ...

Rational points on curves

Michael Stoll (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009. We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve  C over  . The focus is on practical aspects of this problem in the case that the genus of  C is at least  2 , and therefore the set of rational points is finite.

On the value set of small families of polynomials over a finite field, II

Guillermo Matera, Mariana Pérez, Melina Privitelli (2014)

Acta Arithmetica

Similarity:

We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in q [ T ] of degree d for which s consecutive coefficients a = ( a d - 1 , . . . , a d - s ) are fixed. Our estimate asserts that ( d , s , a ) = μ d q + ( q 1 / 2 ) , where μ d : = r = 1 d ( ( - 1 ) r - 1 ) / ( r ! ) . We also prove that ( d , s , a ) = μ ² d q ² + ( q 3 / 2 ) , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of q [ T ] of degree d with s consecutive coefficients fixed as above. Finally, we show that ( d , 0 ) = μ ² d q ² + ( q ) , where ₂(d,0) denotes the average second moment for...