Displaying similar documents to “Some congruences involving binomial coefficients”

Some new infinite families of congruences modulo 3 for overpartitions into odd parts

Ernest X. W. Xia (2016)

Colloquium Mathematicae

Similarity:

Let p ̅ o ( n ) denote the number of overpartitions of n in which only odd parts are used. Some congruences modulo 3 and powers of 2 for the function p ̅ o ( n ) have been derived by Hirschhorn and Sellers, and Lovejoy and Osburn. In this paper, employing 2-dissections of certain quotients of theta functions due to Ramanujan, we prove some new infinite families of Ramanujan-type congruences for p ̅ o ( n ) modulo 3. For example, we prove that for n, α ≥ 0, p ̅ o ( 4 α ( 24 n + 17 ) ) p ̅ o ( 4 α ( 24 n + 23 ) ) 0 ( m o d 3 ) .

New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs

Ernest X. W. Xia (2015)

Colloquium Mathematicae

Similarity:

Let p p ¯ ( n ) denote the number of overpartition pairs of n. Bringmann and Lovejoy (2008) proved that for n ≥ 0, p p ¯ ( 3 n + 2 ) 0 ( m o d 3 ) . They also proved that there are infinitely many Ramanujan-type congruences modulo every power of odd primes for p p ¯ ( n ) . Recently, Chen and Lin (2012) established some Ramanujan-type identities and explicit congruences for p p ¯ ( n ) . Furthermore, they also constructed infinite families of congruences for p p ¯ ( n ) modulo 3 and 5, and two congruence relations modulo 9. In this paper, we prove several...

Polynomial analogues of Ramanujan congruences for Han's hooklength formula

William J. Keith (2013)

Acta Arithmetica

Similarity:

This article considers the eta power ( 1 - q k ) b - 1 . It is proved that the coefficients of q n / n ! in this expression, as polynomials in b, exhibit equidistribution of the coefficients in the nonzero residue classes mod 5 when n = 5j+4. Other symmetries, as well as symmetries for other primes and prime powers, are proved, and some open questions are raised.

q -analogues of two supercongruences of Z.-W. Sun

Cheng-Yang Gu, Victor J. W. Guo (2020)

Czechoslovak Mathematical Journal

Similarity:

We give several different q -analogues of the following two congruences of Z.-W. Sun: k = 0 ( p r - 1 ) / 2 1 8 k 2 k k 2 p r ( mod p 2 ) and k = 0 ( p r - 1 ) / 2 1 16 k 2 k k 3 p r ( mod p 2 ) , where p is an odd prime, r is a positive integer, and ( m n ) is the Jacobi symbol. The proofs of them require the use of some curious q -series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.

Congruences for certain families of Apéry-like sequences

Zhi-Hong Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

We systematically investigate the expressions and congruences for both a one-parameter family { G n ( x ) } as well as a two-parameter family { G n ( r , m ) } of sequences.

On Alternatives of Polynomial Congruences

Mariusz Skałba (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

What should be assumed about the integral polynomials f ( x ) , . . . , f k ( x ) in order that the solvability of the congruence f ( x ) f ( x ) f k ( x ) 0 ( m o d p ) for sufficiently large primes p implies the solvability of the equation f ( x ) f ( x ) f k ( x ) = 0 in integers x? We provide some explicit characterizations for the cases when f j ( x ) are binomials or have cyclic splitting fields.

Some q-supercongruences for truncated basic hypergeometric series

Victor J. W. Guo, Jiang Zeng (2015)

Acta Arithmetica

Similarity:

For any odd prime p we obtain q-analogues of van Hamme’s and Rodriguez-Villegas’ supercongruences involving products of three binomial coefficients such as k = 0 ( p - 1 ) / 2 [ 2 k k ] q ² 3 ( q 2 k ) / ( ( - q ² ; q ² ) ² k ( - q ; q ) ² 2 k ² ) 0 ( m o d [ p ] ² ) for p≡ 3 (mod 4), k = 0 ( p - 1 ) / 2 [ 2 k k ] q ³ ( ( q ; q ³ ) k ( q ² ; q ³ ) k q 3 k ) ( ( q ; q ) k ² ) 0 ( m o d [ p ] ² ) for p≡ 2 (mod 3), where [ p ] = 1 + q + + q p - 1 and ( a ; q ) = ( 1 - a ) ( 1 - a q ) ( 1 - a q n - 1 ) . We also prove q-analogues of the Sun brothers’ generalizations of the above supercongruences. Our proofs are elementary in nature and use the theory of basic hypergeometric series and combinatorial q-binomial identities including a new q-Clausen type summation formula. ...

Arithmetic theory of harmonic numbers (II)

Zhi-Wei Sun, Li-Lu Zhao (2013)

Colloquium Mathematicae

Similarity:

For k = 1,2,... let H k denote the harmonic number j = 1 k 1 / j . In this paper we establish some new congruences involving harmonic numbers. For example, we show that for any prime p > 3 we have k = 1 p - 1 ( H k ) / ( k 2 k ) 7 / 24 p B p - 3 ( m o d p ² ) , k = 1 p - 1 ( H k , 2 ) / ( k 2 k ) - 3 / 8 B p - 3 ( m o d p ) , and k = 1 p - 1 ( H ² k , 2 n ) / ( k 2 n ) ( 6 n + 1 2 n - 1 + n ) / ( 6 n + 1 ) p B p - 1 - 6 n ( m o d p ² ) for any positive integer n < (p-1)/6, where B₀,B₁,B₂,... are Bernoulli numbers, and H k , m : = j = 1 k 1 / ( j m ) .

Linear congruences and a conjecture of Bibak

Chinnakonda Gnanamoorthy Karthick Babu, Ranjan Bera, Balasubramanian Sury (2024)

Czechoslovak Mathematical Journal

Similarity:

We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences i = 1 k a i x i b ( mod n ) . In particular, we obtain explicit expressions for the number of solutions, where x i ’s are squares modulo n . In addition, we obtain expressions for the number of solutions with order restrictions x 1 x k or with strict order restrictions x 1 > > x k in some special cases. In these results, the expressions for the number of solutions involve...

On sums of binomial coefficients modulo p²

Zhi-Wei Sun (2012)

Colloquium Mathematicae

Similarity:

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) / m k ( m o d p ² ) , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and p a > 3 , then k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) ( - h / 2 ) k ( ( 1 - 2 h ) / ( p a ) ) ( 1 + h ( ( 4 - 2 / h ) p - 1 - 1 ) ) ( m o d p ² ) , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If p a > 3 then k = 0 p a - 1 ( p a - 1 k ) ( 2 k k ) ( - 1 ) k 3 p - 1 ( p a / 3 ) ( m o d p ² ) .

On the gaps between q -binomial coefficients

Florian Luca, Sylvester Manganye (2021)

Communications in Mathematics

Similarity:

In this note, we estimate the distance between two q -nomial coefficients n k q - n ' k ' q , where ( n , k ) ( n ' , k ' ) and q 2 is an integer.

On square classes in generalized Fibonacci sequences

Zafer Şiar, Refik Keskin (2016)

Acta Arithmetica

Similarity:

Let P and Q be nonzero integers. The generalized Fibonacci and Lucas sequences are defined respectively as follows: U₀ = 0, U₁ = 1, V₀ = 2, V₁ = P and U n + 1 = P U + Q U n - 1 , V n + 1 = P V + Q V n - 1 for n ≥ 1. In this paper, when w ∈ 1,2,3,6, for all odd relatively prime values of P and Q such that P ≥ 1 and P² + 4Q > 0, we determine all n and m satisfying the equation Uₙ = wUₘx². In particular, when k|P and k > 1, we solve the equations Uₙ = kx² and Uₙ = 2kx². As a result, we determine all n such that Uₙ = 6x². ...

Non-abelian p -adic L -functions and Eisenstein series of unitary groups – The CM method

Thanasis Bouganis (2014)

Annales de l’institut Fourier

Similarity:

In this work we prove various cases of the so-called “torsion congruences” between abelian p -adic L -functions that are related to automorphic representations of definite unitary groups. These congruences play a central role in the non-commutative Iwasawa theory as it became clear in the works of Kakde, Ritter and Weiss on the non-abelian Main Conjecture for the Tate motive. We tackle these congruences for a general definite unitary group of n variables and we obtain more explicit results...

Congruences and homomorphisms on Ω -algebras

Elijah Eghosa Edeghagba, Branimir Šešelja, Andreja Tepavčević (2017)

Kybernetika

Similarity:

The topic of the paper are Ω -algebras, where Ω is a complete lattice. In this research we deal with congruences and homomorphisms. An Ω -algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an Ω -valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce Ω -valued congruences, corresponding quotient Ω -algebras and Ω -homomorphisms and we investigate connections among these notions....

A note on a property of the Gini coefficient

Marian Genčev (2019)

Communications in Mathematics

Similarity:

The scope of this note is a self-contained presentation of a mathematical method that enables us to give an absolute upper bound for the difference of the Gini coefficients G ( σ 1 , , σ n ) - G ( γ 1 , , γ n ) , where ( γ 1 , , γ n ) represents the vector of the gross wages and ( σ 1 , , σ n ) represents the vector of the corresponding super-gross wages that is used in the Czech Republic for calculating the net wage. Since (as of June 2019) σ i = 100 · 1 . 34 γ i / 100 , the study of the above difference seems to be somewhat inaccessible for many economists. However, our estimate...