Displaying similar documents to “Regularity of the effective diffusivity of random diffusion with respect to anisotropy coefficient”

Attractors for stochastic reaction-diffusion equation with additive homogeneous noise

Jakub Slavík (2021)

Czechoslovak Mathematical Journal

Similarity:

We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space d driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted L 2 -space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.

Excited against the tide: a random walk with competing drifts

Mark Holmes (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study excited random walks in i.i.d. random cookie environments in high dimensions, where the k th cookie at a site determines the transition probabilities (to the left and right) for the k th departure from that site. We show that in high dimensions, when the expected right drift of the first cookie is sufficiently large, the velocity is strictly positive, regardless of the strengths and signs of subsequent cookies. Under additional conditions on the cookie environment, we show that...

Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime

Nathanaël Enriquez, Christophe Sabot, Olivier Zindy (2009)

Bulletin de la Société Mathématique de France

Similarity:

We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height log t . In the quenched setting, we also sharply estimate the distribution of the walk at time t .

Slowdown estimates and central limit theorem for random walks in random environment

Alain-Sol Sznitman (2000)

Journal of the European Mathematical Society

Similarity:

This work is concerned with asymptotic properties of multi-dimensional random walks in random environment. Under Kalikow’s condition, we show a central limit theorem for random walks in random environment on d , when d > 2 . We also derive tail estimates on the probability of slowdowns. These latter estimates are of special interest due to the natural interplay between slowdowns and the presence of traps in the medium. The tail behavior of the renewal time constructed in [25] plays an important...

Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards

Francis Comets, Serguei Popov (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a random walk in a stationary ergodic environment in , with unbounded jumps. In addition to uniform ellipticity and a bound on the tails of the possible jumps, we assume a condition of strong transience to the right which implies that there are no “traps.” We prove the law of large numbers with positive speed, as well as the ergodicity of the environment seen from the particle. Then, we consider Knudsen stochastic billiard with a drift in a random tube in d , d 3 , which serves...

Further results on laws of large numbers for uncertain random variables

Feng Hu, Xiaoting Fu, Ziyi Qu, Zhaojun Zong (2023)

Kybernetika

Similarity:

The uncertainty theory was founded by Baoding Liu to characterize uncertainty information represented by humans. Basing on uncertainty theory, Yuhan Liu created chance theory to describe the complex phenomenon, in which human uncertainty and random phenomenon coexist. In this paper, our aim is to derive some laws of large numbers (LLNs) for uncertain random variables. The first theorem proved the Etemadi type LLN for uncertain random variables being functions of pairwise independent...

Invariance principle for Mott variable range hopping and other walks on point processes

P. Caputo, A. Faggionato, T. Prescott (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the α -power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case α = 1 corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start point,...

On the existence and asymptotic behavior of the random solutions of the random integral equation with advancing argument

Henryk Gacki (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

1. Introduction Random Integral Equations play a significant role in characterizing of many biological and engineering problems [4,5,6,7]. We present here new existence theorems for a class of integral equations with advancing argument. Our method is based on the notion of a measure of noncompactness in Banach spaces and the fixed point theorem of Darbo type. We shall deal with random integral equation with advancing argument x ( t , ω ) = h ( t , ω ) + t + δ ( t ) k ( t , τ , ω ) f ( τ , x τ ( ω ) ) d τ , (t,ω) ∈ R⁺ × Ω, (1) where (i) (Ω,A,P) is a complete probability...

On the limiting velocity of random walks in mixing random environment

Xiaoqin Guo (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider random walks in strong-mixing random Gibbsian environments in d , d 2 . Based on regeneration arguments, we will first provide an alternative proof of Rassoul-Agha’s conditional law of large numbers (CLLN) for mixing environment ( (2005) 36–44). Then, using coupling techniques, we show that there is at most one nonzero limiting velocity in high dimensions ( d 5 ).

Random differential inclusions with convex right hand sides

Krystyna Grytczuk, Emilia Rotkiewicz (1991)

Annales Polonici Mathematici

Similarity:

 Abstract. The main result of the present paper deals with the existence of solutions of random functional-differential inclusions of the form ẋ(t, ω) ∈ G(t, ω, x(·, ω), ẋ(·, ω)) with G taking as its values nonempty compact and convex subsets of n-dimensional Euclidean space R n .

Random fixed points of increasing compact random maps

Ismat Beg (2001)

Archivum Mathematicum

Similarity:

Let ( Ω , Σ ) be a measurable space, ( E , P ) be an ordered separable Banach space and let [ a , b ] be a nonempty order interval in E . It is shown that if f : Ω × [ a , b ] E is an increasing compact random map such that a f ( ω , a ) and f ( ω , b ) b for each ω Ω then f possesses a minimal random fixed point α and a maximal random fixed point β .

Weak quenched limiting distributions for transient one-dimensional random walk in a random environment

Jonathon Peterson, Gennady Samorodnitsky (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a one-dimensional, transient random walk in a random i.i.d. environment. The asymptotic behaviour of such random walk depends to a large extent on a crucial parameter κ g t ; 0 that determines the fluctuations of the process. When 0 l t ; κ l t ; 2 , the averaged distributions of the hitting times of the random walk converge to a κ -stable distribution. However, it was shown recently that in this case there does not exist a quenched limiting distribution of the hitting times. That is, it is not true...

Slowdown estimates for ballistic random walk in random environment

Noam Berger (2012)

Journal of the European Mathematical Society

Similarity:

We consider models of random walk in uniformly elliptic i.i.d. random environment in dimension greater than or equal to 4, satisfying a condition slightly weaker than the ballisticity condition ( T ' ) . We show that for every ϵ > 0 and n large enough, the annealed probability of linear slowdown is bounded from above by exp ( - ( log n ) d - ϵ ) . This bound almost matches the known lower bound of exp ( - C ( log n ) d ) , and significantly improves previously known upper bounds. As a corollary we provide almost sharp estimates for the quenched...

Semidirected random polymers: Strong disorder and localization

Nikolaos Zygouras (2010)

Actes des rencontres du CIRM

Similarity:

Semi-directed, random polymers can be modeled by a simple random walk on Z d in a random potential - ( λ + β ω ( x ) ) x Z d , where λ > 0 , β > 0 and ω ( x ) x Z d is a collection of i.i.d., nonnegative random variables. We identify situations where the annealed and quenched costs, that the polymer pays to perform long crossings are different. In these situations we show that the polymer exhibits localization.

Coherent randomness tests and computing the K -trivial sets

Laurent Bienvenu, Noam Greenberg, Antonín Kučera, André Nies, Dan Turetsky (2016)

Journal of the European Mathematical Society

Similarity:

We introduce Oberwolfach randomness, a notion within Demuth’s framework of statistical tests with moving components; here the components’ movement has to be coherent across levels. We show that a ML-random set computes all K -trivial sets if and only if it is not Oberwolfach random, and indeed that there is a K -trivial set which is not computable from any Oberwolfach random set. We show that Oberwolfach random sets satisfy effective versions of almost-everywhere theorems of analysis,...