Displaying similar documents to “Some properties of packing measure with doubling gauge”

A note on the open packing number in graphs

Mehdi Mohammadi, Mohammad Maghasedi (2019)

Mathematica Bohemica

Similarity:

A subset S of vertices in a graph G is an open packing set if no pair of vertices of S has a common neighbor in G . An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The maximum cardinality of an open packing set is called the open packing number and is denoted by ρ o ( G ) . A subset S in a graph G with no isolated vertex is called a total dominating set if any vertex of G is adjacent to some vertex of S . The total domination number...

Packing four copies of a tree into a complete bipartite graph

Liqun Pu, Yuan Tang, Xiaoli Gao (2022)

Czechoslovak Mathematical Journal

Similarity:

In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree T of order n and each integer k 2 , there is a k -packing of T in a complete bipartite graph B n + k - 1 whose order is n + k - 1 . We prove the conjecture is true for k = 4 .

Continuous rearrangements of the Haar system in H p for 0 < p < ∞

Krzysztof Smela (2008)

Studia Mathematica

Similarity:

We prove three theorems on linear operators T τ , p : H p ( ) H p induced by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary condition for T τ , p to be continuous for 0 < p < ∞.

Perturbing the hexagonal circle packing: a percolation perspective

Itai Benjamini, Alexandre Stauffer (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the hexagonal circle packing with radius 1 / 2 and perturb it by letting the circles move as independent Brownian motions for time t . It is shown that, for large enough t , if 𝛱 t is the point process given by the center of the circles at time t , then, as t , the critical radius for circles centered at 𝛱 t to contain an infinite component converges to that of continuum percolation (which was shown – based on a Monte Carlo estimate – by Balister, Bollobás and Walters to be strictly...

On the asymptotics of counting functions for Ahlfors regular sets

Dušan Pokorný, Marc Rauch (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We deal with the so-called Ahlfors regular sets (also known as s -regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit lim ε 0 + ε s N ( ε , K ) exist, where K is an s -regular set and N ( ε , K ) is for instance the ε -packing number of K ?

Generalized Lebesgue points for Sobolev functions

Nijjwal Karak (2017)

Czechoslovak Mathematical Journal

Similarity:

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space ( X , d , μ ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B ( x , r ) converge to f ( x ) when r converges to 0 . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function....

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization...

Limit theorems for geometric functionals of Gibbs point processes

T. Schreiber, J. E. Yukich (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Observations are made on a point process 𝛯 in d in a window Q λ of volume λ . The observation, or ‘score’ at a point x , here denoted ξ ( x , 𝛯 ) , is a function of the points within a random distance of x . When the input 𝛯 is a Poisson or binomial point process, the large λ limit theory for the total score x 𝛯 Q λ ξ ( x , 𝛯 Q λ ) , when properly scaled and centered, is well understood. In this paper we establish general laws of large numbers, variance asymptotics, and central limit theorems for the total score for Gibbsian...

A density version of the Carlson–Simpson theorem

Pandelis Dodos, Vassilis Kanellopoulos, Konstantinos Tyros (2014)

Journal of the European Mathematical Society

Similarity:

We prove a density version of the Carlson–Simpson Theorem. Specifically we show the following. For every integer k 2 and every set A of words over k satisfying lim sup n | A [ k ] n | / k n > 0 there exist a word c over k and a sequence ( w n ) of left variable words over k such that the set c { c w 0 ( a 0 ) . . . w n ( a n ) : n and a 0 , . . . , a n [ k ] } is contained in A . While the result is infinite-dimensional its proof is based on an appropriate finite and quantitative version, also obtained in the paper.

Characteristic points, rectifiability and perimeter measure on stratified groups

Valentino Magnani (2006)

Journal of the European Mathematical Society

Similarity:

We establish an explicit connection between the perimeter measure of an open set E with C 1 boundary and the spherical Hausdorff measure S Q 1 restricted to E , when the ambient space is a stratified group endowed with a left invariant sub-Riemannian metric and Q denotes the Hausdorff dimension of the group. Our formula implies that the perimeter measure of E is less than or equal to S Q 1 ( E ) up to a dimensional factor. The validity of this estimate positively answers a conjecture raised by Danielli,...

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Similarity:

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the...

The s-packing chromatic number of a graph

Wayne Goddard, Honghai Xu (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let S = (a₁, a₂, ...) be an infinite nondecreasing sequence of positive integers. An S-packing k-coloring of a graph G is a mapping from V(G) to 1,2,...,k such that vertices with color i have pairwise distance greater than a i , and the S-packing chromatic number χ S ( G ) of G is the smallest integer k such that G has an S-packing k-coloring. This concept generalizes the concept of proper coloring (when S = (1,1,1,...)) and broadcast coloring (when S = (1,2,3,4,...)). In this paper, we consider...

Hydrodynamical behavior of symmetric exclusion with slow bonds

Tertuliano Franco, Patrícia Gonçalves, Adriana Neumann (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the exclusion process in the one-dimensional discrete torus with N points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance N - β , with β [ 0 , ) . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter β . If β [ 0 , 1 ) , the hydrodynamic limit is given by the usual heat equation. If β = 1 , it is given by a parabolic equation involving an operator...

Maximal upper asymptotic density of sets of integers with missing differences from a given set

Ram Krishna Pandey (2015)

Mathematica Bohemica

Similarity:

Let M be a given nonempty set of positive integers and S any set of nonnegative integers. Let δ ¯ ( S ) denote the upper asymptotic density of S . We consider the problem of finding μ ( M ) : = sup S δ ¯ ( S ) , where the supremum is taken over all sets S satisfying that for each a , b S , a - b M . In this paper we discuss the values and bounds of μ ( M ) where M = { a , b , a + n b } for all even integers and for all sufficiently large odd integers n with a < b and gcd ( a , b ) = 1 .

Relations between Shy Sets and Sets of ν p -Measure Zero in Solovay’s Model

G. Pantsulaia (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

An example of a non-zero non-atomic translation-invariant Borel measure ν p on the Banach space p ( 1 p ) is constructed in Solovay’s model. It is established that, for 1 ≤ p < ∞, the condition " ν p -almost every element of p has a property P" implies that “almost every” element of p (in the sense of [4]) has the property P. It is also shown that the converse is not valid.

Wasserstein metric and subordination

Philippe Clément, Wolfgang Desch (2008)

Studia Mathematica

Similarity:

Let ( X , d X ) , ( Ω , d Ω ) be complete separable metric spaces. Denote by (X) the space of probability measures on X, by W p the p-Wasserstein metric with some p ∈ [1,∞), and by p ( X ) the space of probability measures on X with finite Wasserstein distance from any point measure. Let f : Ω p ( X ) , ω f ω , be a Borel map such that f is a contraction from ( Ω , d Ω ) into ( p ( X ) , W p ) . Let ν₁,ν₂ be probability measures on Ω with W p ( ν , ν ) finite. On X we consider the subordinated measures μ i = Ω f ω d ν i ( ω ) . Then W p ( μ , μ ) W p ( ν , ν ) . As an application we show that the solution measures ϱ α ( t ) ...

Non-isotropic Hausdorff capacity of exceptional sets for pluri-Green potentials in the unit ball of ℂⁿ

Kuzman Adzievski (2006)

Annales Polonici Mathematici

Similarity:

We study questions related to exceptional sets of pluri-Green potentials V μ in the unit ball B of ℂⁿ in terms of non-isotropic Hausdorff capacity. For suitable measures μ on the ball B, the pluri-Green potentials V μ are defined by V μ ( z ) = B l o g ( 1 / | ϕ z ( w ) | ) d μ ( w ) , where for a fixed z ∈ B, ϕ z denotes the holomorphic automorphism of B satisfying ϕ z ( 0 ) = z , ϕ z ( z ) = 0 and ( ϕ z ϕ z ) ( w ) = w for every w ∈ B. If dμ(w) = f(w)dλ(w), where f is a non-negative measurable function of B, and λ is the measure on B, invariant under all holomorphic automorphisms of...