Displaying similar documents to “Semi-embeddings and weakly sequential completeness of the projective tensor product”

On the Dunford-Pettis property of tensor product spaces

Ioana Ghenciu (2011)

Colloquium Mathematicae

Similarity:

We give sufficient conditions on Banach spaces E and F so that their projective tensor product E π F and the duals of their projective and injective tensor products do not have the Dunford-Pettis property. We prove that if E* does not have the Schur property, F is infinite-dimensional, and every operator T:E* → F** is completely continuous, then ( E ϵ F ) * does not have the DPP. We also prove that if E* does not have the Schur property, F is infinite-dimensional, and every operator T: F** → E* is...

Completely Continuous operators

Ioana Ghenciu, Paul Lewis (2012)

Colloquium Mathematicae

Similarity:

A Banach space X has the Dunford-Pettis property (DPP) provided that every weakly compact operator T from X to any Banach space Y is completely continuous (or a Dunford-Pettis operator). It is known that X has the DPP if and only if every weakly null sequence in X is a Dunford-Pettis subset of X. In this paper we give equivalent characterizations of Banach spaces X such that every weakly Cauchy sequence in X is a limited subset of X. We prove that every operator T: X → c₀ is completely...

Dieudonné operators on the space of Bochner integrable functions

Marian Nowak (2011)

Banach Center Publications

Similarity:

A bounded linear operator between Banach spaces is called a Dieudonné operator ( = weakly completely continuous operator) if it maps weakly Cauchy sequences to weakly convergent sequences. Let (Ω,Σ,μ) be a finite measure space, and let X and Y be Banach spaces. We study Dieudonné operators T: L¹(X) → Y. Let i : L ( X ) L ¹ ( X ) stand for the canonical injection. We show that if X is almost reflexive and T: L¹(X) → Y is a Dieudonné operator, then T i : L ( X ) Y is a weakly compact operator. Moreover, we obtain that...

On projectional skeletons in Vašák spaces

Ondřej F. K. Kalenda (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We provide an alternative proof of the theorem saying that any Vašák (or, weakly countably determined) Banach space admits a full 1 -projectional skeleton. The proof is done with the use of the method of elementary submodels and is comparably simple as the proof given by W. Kubiś (2009) in case of weakly compactly generated spaces.

Diagonals of projective tensor products and orthogonally additive polynomials

Qingying Bu, Gerard Buskes (2014)

Studia Mathematica

Similarity:

Let E be a Banach space with 1-unconditional basis. Denote by Δ ( ̂ n , π E ) (resp. Δ ( ̂ n , s , π E ) ) the main diagonal space of the n-fold full (resp. symmetric) projective Banach space tensor product, and denote by Δ ( ̂ n , | π | E ) (resp. Δ ( ̂ n , s , | π | E ) ) the main diagonal space of the n-fold full (resp. symmetric) projective Banach lattice tensor product. We show that these four main diagonal spaces are pairwise isometrically isomorphic, and in addition, that they are isometrically lattice isomorphic to E [ n ] , the completion of the n-concavification...

On weak supercyclicity II

Carlos S. Kubrusly, Bhagwati P. Duggal (2018)

Czechoslovak Mathematical Journal

Similarity:

This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly l -sequentially supercyclic, and (iii) weak l -sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space...

On FU( p )-spaces and p -sequential spaces

Salvador García-Ferreira (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Following Kombarov we say that X is p -sequential, for p α * , if for every non-closed subset A of X there is f α X such that f ( α ) A and f ¯ ( p ) X A . This suggests the following definition due to Comfort and Savchenko, independently: X is a FU( p )-space if for every A X and every x A - there is a function f α A such that f ¯ ( p ) = x . It is not hard to see that p RK q ( RK denotes the Rudin–Keisler order) every p -sequential space is q -sequential every FU( p )-space is a FU( q )-space. We generalize the spaces S n to construct examples of...

Weakly null sequences with upper estimates

Daniel Freeman (2008)

Studia Mathematica

Similarity:

We prove that if ( v i ) is a seminormalized basic sequence and X is a Banach space such that every normalized weakly null sequence in X has a subsequence that is dominated by ( v i ) , then there exists a uniform constant C ≥ 1 such that every normalized weakly null sequence in X has a subsequence that is C-dominated by ( v i ) . This extends a result of Knaust and Odell, who proved this for the cases in which ( v i ) is the standard basis for p or c₀.

A Natural Class of Sequential Banach Spaces

Jarno Talponen (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We introduce and study a natural class of variable exponent p spaces, which generalizes the classical spaces p and c₀. These spaces will typically not be rearrangement-invariant but instead they enjoy a good local control of some geometric properties. Some geometric examples are constructed by using these spaces.

Extension and lifting of weakly continuous polynomials

Raffaella Cilia, Joaquín M. Gutiérrez (2005)

Studia Mathematica

Similarity:

We show that a Banach space X is an ℒ₁-space (respectively, an -space) if and only if it has the lifting (respectively, the extension) property for polynomials which are weakly continuous on bounded sets. We also prove that X is an ℒ₁-space if and only if the space w b ( m X ) of m-homogeneous scalar-valued polynomials on X which are weakly continuous on bounded sets is an -space.

Some isomorphic properties in projective tensor products

Ioana Ghenciu (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We give sufficient conditions implying that the projective tensor product of two Banach spaces X and Y has the p -sequentially Right and the p - L -limited properties, 1 p < .

On asymptotically symmetric Banach spaces

M. Junge, D. Kutzarova, E. Odell (2006)

Studia Mathematica

Similarity:

A Banach space X is asymptotically symmetric (a.s.) if for some C < ∞, for all m ∈ ℕ, for all bounded sequences ( x j i ) j = 1 X , 1 ≤ i ≤ m, for all permutations σ of 1,...,m and all ultrafilters ₁,...,ₘ on ℕ, l i m n , . . . l i m n , | | i = 1 m x n i i | | C l i m n σ ( 1 ) , σ ( 1 ) . . . l i m n σ ( m ) , σ ( m ) | | i = 1 m x n i i | | . We investigate a.s. Banach spaces and several natural variations. X is weakly a.s. (w.a.s.) if the defining condition holds when restricted to weakly convergent sequences ( x j i ) j = 1 . Moreover, X is w.n.a.s. if we restrict the condition further to normalized weakly null sequences. If X is a.s. then...

Biduals of tensor products in operator spaces

Verónica Dimant, Maite Fernández-Unzueta (2015)

Studia Mathematica

Similarity:

We study whether the operator space V * * α W * * can be identified with a subspace of the bidual space ( V α W ) * * , for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be...

Determining c₀ in C(𝒦) spaces

S. A. Argyros, V. Kanellopoulos (2005)

Fundamenta Mathematicae

Similarity:

For a countable compact metric space and a seminormalized weakly null sequence (fₙ)ₙ in C() we provide some upper bounds for the norm of the vectors in the linear span of a subsequence of (fₙ)ₙ. These bounds depend on the complexity of and also on the sequence (fₙ)ₙ itself. Moreover, we introduce the class of c₀-hierarchies. We prove that for every α < ω₁, every normalized weakly null sequence (fₙ)ₙ in C ( ω ω α ) and every c₀-hierarchy generated by (fₙ)ₙ, there exists β ≤ α such that a sequence...

Weak precompactness and property (V*) in spaces of compact operators

Ioana Ghenciu (2015)

Colloquium Mathematicae

Similarity:

We give sufficient conditions for subsets of compact operators to be weakly precompact. Let L w * ( E * , F ) (resp. K w * ( E * , F ) ) denote the set of all w* - w continuous (resp. w* - w continuous compact) operators from E* to F. We prove that if H is a subset of K w * ( E * , F ) such that H(x*) is relatively weakly compact for each x* ∈ E* and H*(y*) is weakly precompact for each y* ∈ F*, then H is weakly precompact. We also prove the following results: If E has property (wV*) and F has property (V*), then K w * ( E * , F ) has property (wV*). Suppose...

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

Weakly precompact operators on C b ( X , E ) with the strict topology

Juliusz Stochmal (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let C b ( X , E ) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study weakly precompact operators T : C b ( X , E ) F . In particular, we show that if X is a paracompact k-space and E contains no isomorphic copy of l¹, then every strongly bounded operator T : C b ( X , E ) F is weakly precompact.

An elementary proof of Marcellini Sbordone semicontinuity theorem

Tomáš G. Roskovec, Filip Soudský (2023)

Kybernetika

Similarity:

The weak lower semicontinuity of the functional F ( u ) = Ω f ( x , u , u ) d x is a classical topic that was studied thoroughly. It was shown that if the function f is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on W 1 , p ( Ω ) . However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.