Completely 1-complemented subspaces of the Schatten spaces
Jean Roydor (2007)
Banach Center Publications
Similarity:
We describe the subspaces of (1 ≤ p ≠ 2 < ∞) which are the range of a completely contractive projection.
Jean Roydor (2007)
Banach Center Publications
Similarity:
We describe the subspaces of (1 ≤ p ≠ 2 < ∞) which are the range of a completely contractive projection.
Sergey V. Astashkin, Lech Maligranda (2015)
Studia Mathematica
Similarity:
The structure of the closed linear span of the Rademacher functions in the Cesàro space is investigated. It is shown that every infinite-dimensional subspace of either is isomorphic to l₂ and uncomplemented in , or contains a subspace isomorphic to c₀ and complemented in . The situation is rather different in the p-convexification of if 1 < p < ∞.
Wolfgang Lusky (2003)
Studia Mathematica
Similarity:
Let be a commuting approximating sequence of the Banach space X leaving the closed subspace A ⊂ X invariant. Then we prove three-space results of the following kind: If the operators Rₙ induce basis projections on X/A, and X or A is an -space, then both X and A have bases. We apply these results to show that the spaces and have bases whenever Λ ⊂ ℤ and ℤ∖Λ is a Sidon set.
Taras O. Banakh, Joanna Garbulińska-Wegrzyn (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Using the technique of Fraïssé theory, for every constant , we construct a universal object in the class of Banach spaces possessing a normalized -suppression unconditional Schauder basis.
Elói Medina Galego (2004)
Colloquium Mathematicae
Similarity:
We establish the existence of Banach spaces E and F isomorphic to complemented subspaces of each other but with isomorphic to , m, n, p, q ∈ ℕ, if and only if m = p and n = q.
Antonio Aizpuru, Francisco J. García-Pacheco (2007)
Bollettino dell'Unione Matematica Italiana
Similarity:
In this paper, we show a necessary and sufficient condition for a real Banach space to have an infinite dimensional subspace which is hilbertizable and complemented using techniques related to -summand vectors.
Taras O. Banakh, Joanna Garbulińska-Wegrzyn (2020)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We observe that the notion of an almost -universal based Banach space, introduced in our earlier paper [1]: Banakh T., Garbulińska-Wegrzyn J., The universal Banach space with a -suppression unconditional basis, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 195–206, is vacuous for . Taking into account this discovery, we reformulate Theorem 5.2 from [1] in order to guarantee that the main results of [1] remain valid.
Pilar Cembranos, Jose Mendoza (2016)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
In this note we survey the partial results needed to show the following general theorem: is a family of mutually non isomorphic Banach spaces. We also comment some related facts and open problems.
Dale E. Alspach, Elói Medina Galego (2011)
Studia Mathematica
Similarity:
A classical result of Cembranos and Freniche states that the C(K,X) space contains a complemented copy of c₀ whenever K is an infinite compact Hausdorff space and X is an infinite-dimensional Banach space. This paper takes this result as a starting point and begins a study of conditions under which the spaces C(α), α < ω₁, are quotients of or complemented in C(K,X). In contrast to the c₀ result, we prove that if C(βℕ ×[1,ω],X) contains a complemented copy of then X contains a copy...
Aydin Sh. Shukurov (2014)
Colloquium Mathematicae
Similarity:
It is well known that if φ(t) ≡ t, then the system is not a Schauder basis in L₂[0,1]. It is natural to ask whether there is a function φ for which the power system is a basis in some Lebesgue space . The aim of this short note is to show that the answer to this question is negative.
Gideon Schechtman (2013)
Studia Mathematica
Similarity:
If and are two 1-unconditional basic sequences in L₁ with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices with norm embeds into L₁. This generalizes a recent result of Prochno and Schütt.
Aydin Sh. Shukurov (2012)
Colloquium Mathematicae
Similarity:
A necessary condition for Kostyuchenko type systems and system of powers to be a basis in (1 ≤ p < +∞) spaces is obtained. In particular, we find a necessary condition for a Kostyuchenko system to be a basis in (1 ≤ p < +∞).
M. Junge, N. J. Nielsen, T. Oikhberg (2008)
Studia Mathematica
Similarity:
In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an -space, then it is either an -space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non-commutative -spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which...
Valentin Ferenczi, Christian Rosendal (2005)
Studia Mathematica
Similarity:
We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let be a Banach space with an unconditional basis ; then either there exists a perfect set P of infinite subsets of ℕ such that for any two distinct A,B ∈ P, , or for a residual set of infinite subsets A of ℕ, is isomorphic to , and in that case, is isomorphic to its square, to its hyperplanes, uniformly isomorphic to for any D ⊂ ℕ, and isomorphic to a denumerable Schauder...
F. Albiac, C. Leránoz (2002)
Studia Mathematica
Similarity:
We prove that the quasi-Banach spaces and (0 < p < 1) have a unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss and Tzafriri have previously proved that the same is true for the respective Banach envelopes and ℓ₁(ℓ₂). They used duality techniques which are not available in the non-locally convex case.
Artur Michalak (2003)
Studia Mathematica
Similarity:
We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. We show that if f: [0,1] → X is an increasing function with respect to a norming subset E of X* with uncountably many points of discontinuity and Q is a countable dense subset of [0,1], then (1) contains an order isomorphic copy of D(0,1), (2) contains an isomorphic copy of C([0,1]), (3) contains an isomorphic copy of c₀(Γ) for some uncountable...
Leandro Candido, Piotr Koszmider (2016)
Studia Mathematica
Similarity:
Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that contains a complemented copy of c₀ if one of the infinite-dimensional...
Sergey V. Astashkin, Lech Maligranda (2014)
Banach Center Publications
Similarity:
Geometric structure of Cesàro function spaces , where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that contains isomorphic and complemented copies of -spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces .
Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2006)
Studia Mathematica
Similarity:
We consider some stability aspects of the classical problem of extension of C(K)-valued operators. We introduce the class ℒ of Banach spaces of Lindenstrauss-Pełczyński type as those such that every operator from a subspace of c₀ into them can be extended to c₀. We show that all ℒ-spaces are of type but not conversely. Moreover, -spaces will be characterized as those spaces E such that E-valued operators from w*(l₁,c₀)-closed subspaces of l₁ extend to l₁. Regarding examples we will...
Dale E. Alspach, Simei Tong (2003)
Studia Mathematica
Similarity:
Many of the known complemented subspaces of have realizations as sequence spaces. In this paper a systematic approach to defining these spaces which uses partitions and weights is introduced. This approach gives a unified description of many well known complemented subspaces of . It is proved that the class of spaces with such norms is stable under (p,2) sums. By introducing the notion of an envelope norm, we obtain a necessary condition for a Banach sequence space with norm given...
Simon Lücking (2014)
Studia Mathematica
Similarity:
Let G be an infinite, compact abelian group and let Λ be a subset of its dual group Γ. We study the question which spaces of the form or and which quotients of the form or have the Daugavet property. We show that is a rich subspace of C(G) if and only if is a semi-Riesz set. If is a rich subspace of L¹(G), then is a rich subspace of C(G) as well. Concerning quotients, we prove that has the Daugavet property if Λ is a Rosenthal set, and that is a poor subspace of L¹(G)...
Sergei V. Astashkin, Lech Maligranda (2010)
Studia Mathematica
Similarity:
The Rademacher sums are investigated in the Cesàro spaces (1 ≤ p ≤ ∞) and in the weighted Korenblyum-Kreĭn-Levin spaces on [0,1]. They span l₂ space in for any 1 ≤ p < ∞ and in if and only if the weight w is larger than on (0,1). Moreover, the span of the Rademachers is not complemented in for any 1 ≤ p < ∞ or in for any quasi-concave weight w. In the case when p > 1 and when w is such that the span of the Rademacher functions is isomorphic to l₂, this span is...
Min Tang, Yong-Gao Chen (2006)
Colloquium Mathematicae
Similarity:
Let , where n ∈ N and A is a subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which is bounded in the square mean. In this paper, we show that there exists a positive integer m₀ such that, for any integer m ≥ m₀, we have a set A ⊂ Zₘ such that A + A = Zₘ and for all n̅ ∈ Zₘ.
Manuel González, José M. Herrera (2007)
Studia Mathematica
Similarity:
We consider real Banach spaces X for which the quotient algebra (X)/ℐn(X) is finite-dimensional, where ℐn(X) stands for the ideal of inessential operators on X. We show that these spaces admit a decomposition as a finite direct sum of indecomposable subspaces for which is isomorphic as a real algebra to either the real numbers ℝ, the complex numbers ℂ, or the quaternion numbers ℍ. Moreover, the set of subspaces can be divided into subsets in such a way that if and are in different...
Yasushi Hirata, Nobuyuki Kemoto (2003)
Fundamenta Mathematicae
Similarity:
It is known that all subspaces of ω₁² have the property that every pair of disjoint closed sets can be separated by disjoint -sets (see [4]). It has been conjectured that all subspaces of ω₁ⁿ also have this property for each n < ω. We exhibit a subspace of ⟨α,β,γ⟩ ∈ ω₁³: α ≤ β ≤ γ which does not have this property, thus disproving the conjecture. On the other hand, we prove that all subspaces of ⟨α,β,γ⟩ ∈ ω₁³: α < β < γ have this property.
Paolo Terenzi
Similarity:
There exists a universal control sequence of increasing positive integers such that: Every infinite-dimensional separable Banach space X has a biorthogonal system xₙ,xₙ* with ||xₙ|| = 1 and ||xₙ*|| < K for each n such that, for each x ∈ X, where π(n) is a permutation of n which depends on x but is uniformly controlled by , that is, for each m.
Elói Medina Galego, Christian Samuel (2013)
Studia Mathematica
Similarity:
We completely determine the and C(K) spaces which are isomorphic to a subspace of , the projective tensor product of the classical space, 1 ≤ p < ∞, and the space C(α) of all scalar valued continuous functions defined on the interval of ordinal numbers [1,α], α < ω₁. In order to do this, we extend a result of A. Tong concerning diagonal block matrices representing operators from to ℓ₁, 1 ≤ p < ∞. The first main theorem is an extension of a result of E. Oja and states...
Robert E. Zink (2002)
Colloquium Mathematicae
Similarity:
In one of the earliest monographs that involve the notion of a Schauder basis, Franklin showed that the Gram-Schmidt orthonormalization of a certain Schauder basis for the Banach space of functions continuous on [0,1] is again a Schauder basis for that space. Subsequently, Ciesielski observed that the Gram-Schmidt orthonormalization of any Schauder system is a Schauder basis not only for C[0,1], but also for each of the spaces , 1 ≤ p < ∞. Although perhaps not probable, the latter...
Christina Brech, Piotr Koszmider (2014)
Fundamenta Mathematicae
Similarity:
This paper is concerned with the isomorphic structure of the Banach space and how it depends on combinatorial tools whose existence is consistent with but not provable from the usual axioms of ZFC. Our main global result is that it is consistent that does not have an orthogonal -decomposition, that is, it is not of the form for any Banach space X. The main local result is that it is consistent that does not embed isomorphically into , where is the cardinality of the continuum,...
S. A. Argyros, I. Deliyanni, A. Manoussakis (2003)
Studia Mathematica
Similarity:
The results of the first part concern the existence of higher order ℓ₁ spreading models in asymptotic ℓ₁ Banach spaces. We sketch the proof of the fact that the mixed Tsirelson space T[(ₙ,θₙ)ₙ], and , admits an spreading model in every block subspace. We also prove that if X is a Banach space with a basis, with the property that there exists a sequence (θₙ)ₙ ⊂ (0,1) with , such that, for every n ∈ ℕ, for every ₙ-admissible block sequence of vectors in X, then there exists c...
Anna Kamont (2001)
Studia Mathematica
Similarity:
We show that each general Haar system is permutatively equivalent in , 1 < p < ∞, to a subsequence of the classical (i.e. dyadic) Haar system. As a consequence, each general Haar system is a greedy basis in , 1 < p < ∞. In addition, we give an example of a general Haar system whose tensor products are greedy bases in each , 1 < p < ∞, d ∈ ℕ. This is in contrast to [11], where it has been shown that the tensor products of the dyadic Haar system are not greedy bases...
A. Szankowski (2009)
Journal of the European Mathematical Society
Similarity:
It is shown that there is a subspace of for which is isomorphic to such that does not have the approximation property. On the other hand, for there is a subspace of such that does not have the approximation property (AP) but the quotient space is isomorphic to . The result is obtained by defining random “Enflo-Davie spaces” which with full probability fail AP for all and have AP for all . For , are isomorphic to .
Hartmut von Trotha
Similarity:
CONTENTSIntroduction................................................................................................................................... 5 Notations.......................................................................................................................... 5§ 1. Preliminaries........................................................................................................................ 6 1. Right invertible operators.....................................................................................................
Ioana Ghenciu (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Equivalent formulations of the Dunford-Pettis property of order (), , are studied. Let , , , , and denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and -convergent operators from to . Classical results of Kalton are used to study the complementability of the spaces and in the space , and of in and .
Stefan Neuwirth (1998)
Studia Mathematica
Similarity:
We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces and of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces , p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between ...
Tomoko Hachiro, Takateru Okayasu (2003)
Studia Mathematica
Similarity:
We take another approach to the well known theorem of Korovkin, in the following situation: X, Y are compact Hausdorff spaces, M is a unital subspace of the Banach space C(X) (respectively, ) of all complex-valued (resp., real-valued) continuous functions on X, S ⊂ M a complex (resp., real) function space on X, ϕₙ a sequence of unital linear contractions from M into C(Y) (resp., ), and a linear isometry from M into C(Y) (resp., ). We show, under the assumption that , where is...
Jean Bourgain, Haïm Brezis, Petru Mironescu (2015)
Journal of the European Mathematical Society
Similarity:
We define a new function space , which contains in particular BMO, BV, and , . We investigate its embedding into Lebesgue and Marcinkiewicz spaces. We present several inequalities involving norms of integer-valued functions in . We introduce a significant closed subspace, , of , containing in particular VMO and , . The above mentioned estimates imply in particular that integer-valued functions belonging to are necessarily constant. This framework provides a “common roof”...
Dimitris Apatsidis (2015)
Studia Mathematica
Similarity:
Let S¹ be the stopping time space and ℬ₁(S¹) be the Baire-1 elements of the second dual of S¹. To each element x** in ℬ₁(S¹) we associate a positive Borel measure on the Cantor set. We use the measures to characterize the operators T: X → S¹, defined on a space X with an unconditional basis, which preserve a copy of S¹. In particular, if X = S¹, we show that T preserves a copy of S¹ if and only if is non-separable as a subset of .