Displaying similar documents to “From restricted type to strong type estimates on quasi-Banach rearrangement invariant spaces”

Order convexity and concavity of Lorentz spaces Λ p , w , 0 < p < ∞

Anna Kamińska, Lech Maligranda (2004)

Studia Mathematica

Similarity:

We study order convexity and concavity of quasi-Banach Lorentz spaces Λ p , w , where 0 < p < ∞ and w is a locally integrable positive weight function. We show first that Λ p , w contains an order isomorphic copy of l p . We then present complete criteria for lattice convexity and concavity as well as for upper and lower estimates for Λ p , w . We conclude with a characterization of the type and cotype of Λ p , w in the case when Λ p , w is a normable space.

Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms

Liguang Liu, Dachun Yang (2009)

Studia Mathematica

Similarity:

Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space p , q s ( ) to a quasi-Banach space ℬ if and only if sup | | T ( a ) | | : a is an infinitely differentiable (p,q,s)-atom of p , q s ( ) < ∞, where the (p,q,s)-atom of p , q s ( ) is as defined by Han, Paluszyński and Weiss.

On the inclusions of X Φ spaces

Seyyed Mohammad Tabatabaie, Alireza Bagheri Salec (2023)

Mathematica Bohemica

Similarity:

We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of X Φ spaces, where Φ is a Young function and X is a quasi-Banach function space on a σ -finite measure space ( Ω , 𝒜 , μ ) .

Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure

Zbigniew Lipecki (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let 𝔐 and be algebras of subsets of a set Ω with 𝔐 , and denote by E ( μ ) the set of all quasi-measure extensions of a given quasi-measure μ on 𝔐 to . We give some criteria for order boundedness of E ( μ ) in b a ( ) , in the general case as well as for atomic μ . Order boundedness implies weak compactness of E ( μ ) . We show that the converse implication holds under some assumptions on 𝔐 , and μ or μ alone, but not in general.

Generalization of the weak amenability on various Banach algebras

Madjid Eshaghi Gordji, Ali Jabbari, Abasalt Bodaghi (2019)

Mathematica Bohemica

Similarity:

The generalized notion of weak amenability, namely ( ϕ , ψ ) -weak amenability, where ϕ , ψ are continuous homomorphisms on a Banach algebra 𝒜 , was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the ( ϕ , ψ ) -weak amenability on the measure algebra M ( G ) , the group algebra L 1 ( G ) and the Segal algebra S 1 ( G ) , where G is a locally compact group, are studied. As a typical example, the ( ϕ , ψ ) -weak amenability of a special semigroup algebra is shown as well.

The Young Measure Representation for Weak Cluster Points of Sequences in M-spaces of Measurable Functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into d . The paper deals with Y-weak cluster points ϕ̅ of the sequence ϕ ( · , z j ( · ) ) in X, where z j : Ω m is measurable for j ∈ ℕ and ϕ : Ω × m d is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set A ϕ , the integral I ( ϕ , ν x ) : = m ϕ ( x , λ ) d ν x ( λ ) exists for x Ω A ϕ and ϕ ̅ ( x ) = I ( ϕ , ν x ) on Ω A ϕ , where ν = ν x x Ω is a measurable-dependent family of Radon probability measures on m .

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

Similarity:

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

The subspace of weak P -points of *

Salvador García-Ferreira, Y. F. Ortiz-Castillo (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let W be the subspace of * consisting of all weak P -points. It is not hard to see that W is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that W is a p -pseudocompact space for all p * .

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

-sums and the Banach space / c

Christina Brech, Piotr Koszmider (2014)

Fundamenta Mathematicae

Similarity:

This paper is concerned with the isomorphic structure of the Banach space / c and how it depends on combinatorial tools whose existence is consistent with but not provable from the usual axioms of ZFC. Our main global result is that it is consistent that / c does not have an orthogonal -decomposition, that is, it is not of the form ( X ) for any Banach space X. The main local result is that it is consistent that ( c ( ) ) does not embed isomorphically into / c , where is the cardinality of the continuum,...

Norm continuity of pointwise quasi-continuous mappings

Alireza Kamel Mirmostafaee (2018)

Mathematica Bohemica

Similarity:

Let X be a Baire space, Y be a compact Hausdorff space and ϕ : X C p ( Y ) be a quasi-continuous mapping. For a proximal subset H of Y × Y we will use topological games 𝒢 1 ( H ) and 𝒢 2 ( H ) on Y × Y between two players to prove that if the first player has a winning strategy in these games, then ϕ is norm continuous on a dense G δ subset of X . It follows that if Y is Valdivia compact, each quasi-continuous mapping from a Baire space X to C p ( Y ) is norm continuous on a dense G δ subset of X .

On the H-property and rotundity of Cesàro direct sums of Banach spaces

Saard Youyen, Suthep Suantai (2008)

Banach Center Publications

Similarity:

In this paper, we define the direct sum ( i = 1 n X i ) c e s p of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that ( i = 1 n X i ) c e s p has the H-property if and only if each X i has the H-property, and ( i = 1 n X i ) c e s p has the Schur property if and only if each X i has the Schur property. Moreover, we also show that ( i = 1 n X i ) c e s p is rotund if and only if each X i is rotund.

Pisier's inequality revisited

Tuomas Hytönen, Assaf Naor (2013)

Studia Mathematica

Similarity:

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies - 1 , 1 | | j = 1 n j f j ( ε ) | | p d μ ( ε ) p - 1 , 1 - 1 , 1 | | j = 1 n δ j Δ f j ( ε ) | | p d μ ( ε ) d μ ( δ ) , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and j j = 1 n and Δ = j = 1 n j are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p ( X ) , we show that p ( X ) k = 1 n 1 / k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special...

Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions

Fabio Berra (2022)

Czechoslovak Mathematical Journal

Similarity:

We give a quantitative characterization of the pairs of weights ( w , v ) for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak ( p , p ) type inequality for 1 p < . More precisely, given any measurable set E 0 , the estimate w ( { x n : M + , d ( 𝒳 E 0 ) ( x ) > t } ) C [ ( w , v ) ] A p + , d ( ) p t p v ( E 0 ) holds if and only if the pair ( w , v ) belongs to A p + , d ( ) , that is, | E | | Q | [ ( w , v ) ] A p + , d ( ) v ( E ) w ( Q ) 1 / p for every dyadic cube Q and every measurable set E Q + . The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the...

Existence theorems for nonlinear differential equations having trichotomy in Banach spaces

Adel Mahmoud Gomaa (2017)

Czechoslovak Mathematical Journal

Similarity:

We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation x ˙ ( t ) = ( t ) x ( t ) + f ( t , x ( t ) ) , t ( P ) where { ( t ) : t } is a family of linear operators from a Banach space E into itself and f : × E E . By L ( E ) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0 , we let C ( [ - d , 0 ] , E ) be the Banach space of continuous functions from [ - d , 0 ] into E and f d : [ a , b ] × C ( [ - d , 0 ] , E ) E . Let ^ : [ a , b ] L ( E ) be a strongly measurable and Bochner integrable operator on [ a , b ] and for t [ a , b ] define τ t x ( s ) = x ( t + s ) for each s [ - d , 0 ] . We prove that, under certain...

Structure of Cesàro function spaces: a survey

Sergey V. Astashkin, Lech Maligranda (2014)

Banach Center Publications

Similarity:

Geometric structure of Cesàro function spaces C e s p ( I ) , where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that C e s p [ 0 , 1 ] contains isomorphic and complemented copies of l q -spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces C e s p [ 0 , 1 ] .

On the Aronszajn property for integral equations in Banach space

Stanisław Szufla (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

For the integral equation (1) below we prove the existence on an interval J = [ 0 , a ] of a solution x with values in a Banach space E , belonging to the class L p ( J , E ) , p > 1 . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.