Displaying similar documents to “Dimensions of non-differentiability points of Cantor functions”

Some properties of packing measure with doubling gauge

Sheng-You Wen, Zhi-Ying Wen (2004)

Studia Mathematica

Similarity:

Let g be a doubling gauge. We consider the packing measure g and the packing premeasure g in a metric space X. We first show that if g ( X ) is finite, then as a function of X, g has a kind of “outer regularity”. Then we prove that if X is complete separable, then λ s u p g ( F ) g ( B ) s u p g ( F ) for every Borel subset B of X, where the supremum is taken over all compact subsets of B having finite g -premeasure, and λ is a positive number depending only on the doubling gauge g. As an application, we show that for every doubling...

A note on the open packing number in graphs

Mehdi Mohammadi, Mohammad Maghasedi (2019)

Mathematica Bohemica

Similarity:

A subset S of vertices in a graph G is an open packing set if no pair of vertices of S has a common neighbor in G . An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The maximum cardinality of an open packing set is called the open packing number and is denoted by ρ o ( G ) . A subset S in a graph G with no isolated vertex is called a total dominating set if any vertex of G is adjacent to some vertex of S . The total domination number...

Characterization of local dimension functions of subsets of d

L. Olsen (2005)

Colloquium Mathematicae

Similarity:

For a subset E d and x d , the local Hausdorff dimension function of E at x is defined by d i m H , l o c ( x , E ) = l i m r 0 d i m H ( E B ( x , r ) ) where d i m H denotes the Hausdorff dimension. We give a complete characterization of the set of functions that are local Hausdorff dimension functions. In fact, we prove a significantly more general result, namely, we give a complete characterization of those functions that are local dimension functions of an arbitrary regular dimension index.

Packing four copies of a tree into a complete bipartite graph

Liqun Pu, Yuan Tang, Xiaoli Gao (2022)

Czechoslovak Mathematical Journal

Similarity:

In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree T of order n and each integer k 2 , there is a k -packing of T in a complete bipartite graph B n + k - 1 whose order is n + k - 1 . We prove the conjecture is true for k = 4 .

The s-packing chromatic number of a graph

Wayne Goddard, Honghai Xu (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let S = (a₁, a₂, ...) be an infinite nondecreasing sequence of positive integers. An S-packing k-coloring of a graph G is a mapping from V(G) to 1,2,...,k such that vertices with color i have pairwise distance greater than a i , and the S-packing chromatic number χ S ( G ) of G is the smallest integer k such that G has an S-packing k-coloring. This concept generalizes the concept of proper coloring (when S = (1,1,1,...)) and broadcast coloring (when S = (1,2,3,4,...)). In this paper, we consider...

Homogeneity and non-coincidence of Hausdorff and box dimensions for subsets of ℝⁿ

Anders Nilsson, Peter Wingren (2007)

Studia Mathematica

Similarity:

A class of subsets of ℝⁿ is constructed that have certain homogeneity and non-coincidence properties with respect to Hausdorff and box dimensions. For each triple (r,s,t) of numbers in the interval (0,n] with r < s < t, a compact set K is constructed so that for any non-empty subset U relatively open in K, we have ( d i m H ( U ) , d i m ̲ B ( U ) , d i m ¯ B ( U ) ) = ( r , s , t ) . Moreover, 2 - n H r ( K ) 2 n r / 2 .

Packing of nonuniform hypergraphs - product and sum of sizes conditions

Paweł Naroski (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Hypergraphs H , . . . , H N of order n are mutually packable if one can find their edge disjoint copies in the complete hypergraph of order n. We prove that two hypergraphs are mutually packable if the product of their sizes satisfies some upper bound. Moreover we show that an arbitrary set of the hypergraphs is mutually packable if the sum of their sizes is sufficiently small.

Perturbing the hexagonal circle packing: a percolation perspective

Itai Benjamini, Alexandre Stauffer (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the hexagonal circle packing with radius 1 / 2 and perturb it by letting the circles move as independent Brownian motions for time t . It is shown that, for large enough t , if 𝛱 t is the point process given by the center of the circles at time t , then, as t , the critical radius for circles centered at 𝛱 t to contain an infinite component converges to that of continuum percolation (which was shown – based on a Monte Carlo estimate – by Balister, Bollobás and Walters to be strictly...

Continuous rearrangements of the Haar system in H p for 0 < p < ∞

Krzysztof Smela (2008)

Studia Mathematica

Similarity:

We prove three theorems on linear operators T τ , p : H p ( ) H p induced by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary condition for T τ , p to be continuous for 0 < p < ∞.

Infinite Iterated Function Systems Depending on a Parameter

Ludwik Jaksztas (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets J 0 , σ for the map f₀(z) = z²+1/4 on the parameter σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of J 0 , σ , given by Urbański and Zinsmeister. The closure of the limit set of our IFS ϕ σ , α n , k is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of...

On the asymptotics of counting functions for Ahlfors regular sets

Dušan Pokorný, Marc Rauch (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We deal with the so-called Ahlfors regular sets (also known as s -regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit lim ε 0 + ε s N ( ε , K ) exist, where K is an s -regular set and N ( ε , K ) is for instance the ε -packing number of K ?

Packing constant for Cesàro-Orlicz sequence spaces

Zhen-Hua Ma, Li-Ning Jiang, Qiao-Ling Xin (2016)

Czechoslovak Mathematical Journal

Similarity:

The packing constant is an important and interesting geometric parameter of Banach spaces. Inspired by the packing constant for Orlicz sequence spaces, the main purpose of this paper is calculating the Kottman constant and the packing constant of the Cesàro-Orlicz sequence spaces ( ces φ ) defined by an Orlicz function φ equipped with the Luxemburg norm. In order to compute the constants, the paper gives two formulas. On the base of these formulas one can easily obtain the packing constant...

On inhomogeneous self-similar measures and their L q spectra

Przemysław Liszka (2013)

Annales Polonici Mathematici

Similarity:

Let S i : d d for i = 1,..., N be contracting similarities, let ( p , . . . , p N , p ) be a probability vector and let ν be a probability measure on d with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on d such that μ = i = 1 N p i μ S i - 1 + p ν . We give satisfactory estimates for the lower and upper bounds of the L q spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular,...

The (dis)connectedness of products of Hausdorff spaces in the box topology

Vitalij A. Chatyrko (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper the following two propositions are proved: (a) If X α , α A , is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product α A X α can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If X α , α A , is an infinite system of Brown Hausdorff topological spaces then the box product α A X α is also Brown Hausdorff, and hence, it is connected. A space...

Univoque sets for real numbers

Fan Lü, Bo Tan, Jun Wu (2014)

Fundamenta Mathematicae

Similarity:

For x ∈ (0,1), the univoque set for x, denoted (x), is defined to be the set of β ∈ (1,2) such that x has only one representation of the form x = x₁/β + x₂/β² + ⋯ with x i 0 , 1 . We prove that for any x ∈ (0,1), (x) contains a sequence β k k 1 increasing to 2. Moreover, (x) is a Lebesgue null set of Hausdorff dimension 1; both (x) and its closure ( x ) ¯ are nowhere dense.

On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets

Ludwik Jaksztas (2011)

Fundamenta Mathematicae

Similarity:

Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map g σ . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set J 0 , σ is continuous at σ₀ as the function of the parameter σ ¯ if and only if H D ( J 0 , σ ) 4 / 3 . Since H D ( J 0 , σ ) > 4 / 3 on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of H D ( J 0 , σ ) on an open and dense subset of...

On the Hausdorff Dimension of Topological Subspaces

Tomasz Szarek, Maciej Ślęczka (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is shown that every Polish space X with d i m T X d admits a compact subspace Y such that d i m H Y d where d i m T and d i m H denote the topological and Hausdorff dimensions, respectively.

Limit theorems for geometric functionals of Gibbs point processes

T. Schreiber, J. E. Yukich (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Observations are made on a point process 𝛯 in d in a window Q λ of volume λ . The observation, or ‘score’ at a point x , here denoted ξ ( x , 𝛯 ) , is a function of the points within a random distance of x . When the input 𝛯 is a Poisson or binomial point process, the large λ limit theory for the total score x 𝛯 Q λ ξ ( x , 𝛯 Q λ ) , when properly scaled and centered, is well understood. In this paper we establish general laws of large numbers, variance asymptotics, and central limit theorems for the total score for Gibbsian...

Construction of an Uncountable Difference between Φ(B) and Φ f ( B )

Josh Campbell, David Swanson (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We construct a set B and homeomorphism f where f and f - 1 have property N such that the symmetric difference between the sets of density points and of f-density points of B is uncountable.

The absolute continuity of the invariant measure of random iterated function systems with overlaps

Balázs Bárány, Tomas Persson (2010)

Fundamenta Mathematicae

Similarity:

We consider iterated function systems on the interval with random perturbation. Let Y ε be uniformly distributed in [1-ε,1+ ε] and let f i C 1 + α be contractions with fixpoints a i . We consider the iterated function system Y ε f i + a i ( 1 - Y ε ) i = 1 , where each of the maps is chosen with probability p i . It is shown that the invariant density is in L² and its L² norm does not grow faster than 1/√ε as ε vanishes. The proof relies on defining a piecewise hyperbolic dynamical system on the cube with an SRB-measure whose projection...

On the powers of Voiculescu's circular element

Ferenc Oravecz (2001)

Studia Mathematica

Similarity:

The main result of the paper is that for a circular element c in a C*-probability space, ( c , c n * ) is an R-diagonal pair in the sense of Nica and Speicher for every n = 1,2,... The coefficients of the R-series are found to be the generalized Catalan numbers of parameter n-1.

Quantization Dimension Estimate of Inhomogeneous Self-Similar Measures

Mrinal Kanti Roychowdhury (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We consider an inhomogeneous measure μ with the inhomogeneous part a self-similar measure ν, and show that for a given r ∈ (0,∞) the lower and the upper quantization dimensions of order r of μ are bounded below by the quantization dimension D r ( ν ) of ν and bounded above by a unique number κ r ( 0 , ) , related to the temperature function of the thermodynamic formalism that arises in the multifractal analysis of μ.

The growth speed of digits in infinite iterated function systems

Chun-Yun Cao, Bao-Wei Wang, Jun Wu (2013)

Studia Mathematica

Similarity:

Let f n 1 be an infinite iterated function system on [0,1] satisfying the open set condition with the open set (0,1) and let Λ be its attractor. Then to any x ∈ Λ (except at most countably many points) corresponds a unique sequence a ( x ) n 1 of integers, called the digit sequence of x, such that x = l i m n f a ( x ) f a ( x ) ( 1 ) . We investigate the growth speed of the digits in a general infinite iterated function system. More precisely, we determine the dimension of the set x Λ : a ( x ) B ( n 1 ) , l i m n a ( x ) = for any infinite subset B ⊂ ℕ, a question posed by...

A two-dimensional univoque set

Martijn de Vrie, Vilmos Komornik (2011)

Fundamenta Mathematicae

Similarity:

Let J ⊂ ℝ² be the set of couples (x,q) with q > 1 such that x has at least one representation of the form x = i = 1 c i q - i with integer coefficients c i satisfying 0 c i < q , i ≥ 1. In this case we say that ( c i ) = c c . . . is an expansion of x in base q. Let U be the set of couples (x,q) ∈ J such that x has exactly one expansion in base q. In this paper we deduce some topological and combinatorial properties of the set U. We characterize the closure of U, and we determine its Hausdorff dimension. For (x,q) ∈ J, we also...