Displaying similar documents to “Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators”

Littlewood-Paley-Stein functions on complete Riemannian manifolds for 1 ≤ p ≤ 2

Thierry Coulhon, Xuan Thinh Duong, Xiang Dong Li (2003)

Studia Mathematica

Similarity:

We study the weak type (1,1) and the L p -boundedness, 1 < p ≤ 2, of the so-called vertical (i.e. involving space derivatives) Littlewood-Paley-Stein functions and ℋ respectively associated with the Poisson semigroup and the heat semigroup on a complete Riemannian manifold M. Without any assumption on M, we observe that and ℋ are bounded in L p , 1 < p ≤ 2. We also consider modified Littlewood-Paley-Stein functions that take into account the positivity of the bottom of the spectrum....

Riesz potentials and amalgams

Michael Cowling, Stefano Meda, Roberta Pasquale (1999)

Annales de l'institut Fourier

Similarity:

Let ( M , d ) be a metric space, equipped with a Borel measure μ satisfying suitable compatibility conditions. An amalgam A p q ( M ) is a space which looks locally like L p ( M ) but globally like L q ( M ) . We consider the case where the measure μ ( B ( x , ρ ) of the ball B ( x , ρ ) with centre x and radius ρ behaves like a polynomial in ρ , and consider the mapping properties between amalgams of kernel operators where the kernel ker K ( x , y ) behaves like d ( x , y ) - a when d ( x , y ) 1 and like d ( x , y ) - b when d ( x , y ) 1 . As an application, we describe Hardy–Littlewood–Sobolev type regularity...

A simple-minded computation of heat kernels on Heisenberg groups

Françoise Lust-Piquard (2003)

Colloquium Mathematicae

Similarity:

We compute the heat kernel on the classical and nonisotropic Heisenberg groups, and on the free step two nilpotent groups N n , 2 , by an elementary method, in particular without using Laguerre calculus.

Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates

Peng Chen (2013)

Colloquium Mathematicae

Similarity:

We consider an abstract non-negative self-adjoint operator L acting on L²(X) which satisfies Davies-Gaffney estimates. Let H L p ( X ) (p > 0) be the Hardy spaces associated to the operator L. We assume that the doubling condition holds for the metric measure space X. We show that a sharp Hörmander-type spectral multiplier theorem on H L p ( X ) follows from restriction-type estimates and Davies-Gaffney estimates. We also establish a sharp result for the boundedness of Bochner-Riesz means on H L p ( X ) . ...

Extending Hardy fields by non- -germs

Krzysztof Grelowski (2008)

Annales Polonici Mathematici

Similarity:

For a large class of Hardy fields their extensions containing non- -germs are constructed. Hardy fields composed of only non- -germs, apart from constants, are also considered.

Triebel-Lizorkin spaces with non-doubling measures

Yongsheng Han, Dachun Yang (2004)

Studia Mathematica

Similarity:

Suppose that μ is a Radon measure on d , which may be non-doubling. The only condition assumed on μ is a growth condition, namely, there is a constant C₀ > 0 such that for all x ∈ supp(μ) and r > 0, μ(B(x,r)) ≤ C₀rⁿ, where 0 < n ≤ d. The authors provide a theory of Triebel-Lizorkin spaces p q s ( μ ) for 1 < p < ∞, 1 ≤ q ≤ ∞ and |s| < θ, where θ > 0 is a real number which depends on the non-doubling measure μ, C₀, n and d. The method does not use the vector-valued maximal function...

Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces

George Kyriazis, Pencho Petrushev, Yuan Xu (2008)

Studia Mathematica

Similarity:

The Littlewood-Paley theory is extended to weighted spaces of distributions on [-1,1] with Jacobi weights w ( t ) = ( 1 - t ) α ( 1 + t ) β . Almost exponentially localized polynomial elements (needlets) φ ξ , ψ ξ are constructed and, in complete analogy with the classical case on ℝⁿ, it is shown that weighted Triebel-Lizorkin and Besov spaces can be characterized by the size of the needlet coefficients f , φ ξ in respective sequence spaces.

Boundedness of the Hausdorff operators in H p spaces, 0 < p < 1

Elijah Liflyand, Akihiko Miyachi (2009)

Studia Mathematica

Similarity:

Sufficient conditions for the boundedness of the Hausdorff operators in the Hardy spaces H p , 0 < p < 1, on the real line are proved. Two related negative results are also given.

Notes on commutator on the variable exponent Lebesgue spaces

Dinghuai Wang (2019)

Czechoslovak Mathematical Journal

Similarity:

We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss [ b , T ] is bounded on the variable exponent Lebesgue spaces, then b is a bounded mean oscillation (BMO) function.

Calderón-Zygmund operators acting on generalized Carleson measure spaces

Chin-Cheng Lin, Kunchuan Wang (2012)

Studia Mathematica

Similarity:

We study Calderón-Zygmund operators acting on generalized Carleson measure spaces C M O r α , q and show a necessary and sufficient condition for their boundedness. The spaces C M O r α , q are a generalization of BMO, and can be regarded as the duals of homogeneous Triebel-Lizorkin spaces as well.

The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part

Min Hu, Dinghuai Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

A version of the John-Nirenberg inequality suitable for the functions b BMO with b - L is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.

Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

Regularity properties of commutators and B M O -Triebel-Lizorkin spaces

Abdellah Youssfi (1995)

Annales de l'institut Fourier

Similarity:

In this paper we consider the regularity problem for the commutators ( [ b , R k ] ) 1 k n where b is a locally integrable function and ( R j ) 1 j n are the Riesz transforms in the n -dimensional euclidean space n . More precisely, we prove that these commutators ( [ b , R k ] ) 1 k n are bounded from L p into the Besov space B ˙ p s , p for 1 &lt; p &lt; + and 0 &lt; s &lt; 1 if and only if b is in the B M O -Triebel-Lizorkin space F ˙ s , p . The reduction of our result to the case p = 2 gives in particular that the commutators ( [ b , R k ] ) 1 k n are bounded form L 2 into the Sobolev space H ˙ s if and only if b ...