Displaying similar documents to “Anisotropic classes of homogeneous pseudodifferential symbols”

Besov spaces on spaces of homogeneous type and fractals

Dachun Yang (2003)

Studia Mathematica

Similarity:

Let Γ be a compact d-set in ℝⁿ with 0 < d ≤ n, which includes various kinds of fractals. The author shows that the Besov spaces B p q s ( Γ ) defined by two different and equivalent methods, namely, via traces and quarkonial decompositions in the sense of Triebel are the same spaces as those obtained by regarding Γ as a space of homogeneous type when 0 < s < 1, 1 < p < ∞ and 1 ≤ q ≤ ∞.

Boundedness of para-product operators on spaces of homogeneous type

Yayuan Xiao (2017)

Czechoslovak Mathematical Journal

Similarity:

We obtain the boundedness of Calderón-Zygmund singular integral operators T of non-convolution type on Hardy spaces H p ( 𝒳 ) for 1 / ( 1 + ϵ ) < p 1 , where 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss (1971), and ϵ is the regularity exponent of the kernel of the singular integral operator T . Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast...

Commutators of Littlewood-Paley [...] g κ ∗ g κ * -functions on non-homogeneous metric measure spaces

Guanghui Lu, Shuangping Tao (2017)

Open Mathematics

Similarity:

The main purpose of this paper is to prove that the boundedness of the commutator [...] Mκ,b∗ κ , b * generated by the Littlewood-Paley operator [...] Mκ∗ κ * and RBMO (μ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of [...] Mκ∗ κ * satisfies a certain Hörmander-type condition, the authors prove that [...] Mκ,b∗ κ , b * is bounded on Lebesgue spaces Lp(μ) for 1 < p < ∞, bounded from...

L p ( ) boundedness for the commutator of a homogeneous singular integral operator

Guoen Hu (2003)

Studia Mathematica

Similarity:

The commutator of a singular integral operator with homogeneous kernel Ω(x)/|x|ⁿ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that Ω L ( l o g L ) k + 1 ( S n - 1 ) is a sufficient condition for the kth order commutator to be bounded on L p ( ) for all 1 < p < ∞. The corresponding maximal operator is also considered.

Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations

Dachun Yang (2005)

Studia Mathematica

Similarity:

Let ( X , ϱ , μ ) d , θ be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x’,y ∈ X, | ϱ ( x , y ) - ϱ ( x ' , y ) | C ϱ ( x , x ' ) θ [ ϱ ( x , y ) + ϱ ( x ' , y ) ] 1 - θ , and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X, μ ( y X : ϱ ( x , y ) < r ) r d . Let ε ∈ (0,θ], |s| < ε and maxd/(d+ε),d/(d+s+ε) < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces F q s ( X ) and establishes their frame characterizations by first establishing a Plancherel-Pólya-type...

Radial maximal function characterizations for Hardy spaces on RD-spaces

Loukas Grafakos, Liguang Liu, Dachun Yang (2009)

Bulletin de la Société Mathématique de France

Similarity:

An RD-space 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type 𝒳 having “dimension” n , there exists a p 0 ( n / ( n + 1 ) , 1 ) such that for certain classes of distributions, the L p ( 𝒳 ) quasi-norms of their radial maximal functions and grand maximal functions are equivalent when p ( p 0 , ] . This result yields a radial maximal function characterization for Hardy spaces on 𝒳 . ...

Limiting Sobolev inequalities for vector fields and canceling linear differential operators

Jean Van Schaftingen (2013)

Journal of the European Mathematical Society

Similarity:

The estimate D k - 1 u L n / ( n - 1 ) A ( D ) u L 1 is shown to hold if and only if A ( D ) is elliptic and canceling. Here A ( D ) is a homogeneous linear differential operator A ( D ) of order k on n from a vector space V to a vector space E . The operator A ( D ) is defined to be canceling if ξ n { 0 } A ( ξ ) [ V ] = { 0 } . This result implies in particular the classical Gagliardo–Nirenberg–Sobolev inequality, the Korn–Sobolev inequality and Hodge–Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous...

Classifying homogeneous ultrametric spaces up to coarse equivalence

Taras Banakh, Dušan Repovš (2016)

Colloquium Mathematicae

Similarity:

For every metric space X we introduce two cardinal characteristics c o v ( X ) and c o v ( X ) describing the capacity of balls in X. We prove that these cardinal characteristics are invariant under coarse equivalence, and that two ultrametric spaces X,Y are coarsely equivalent if c o v ( X ) = c o v ( X ) = c o v ( Y ) = c o v ( Y ) . This implies that an ultrametric space X is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if c o v ( X ) = c o v ( X ) . Moreover, two isometrically homogeneous ultrametric spaces X,Y are coarsely equivalent if and...

Regularity properties of commutators and B M O -Triebel-Lizorkin spaces

Abdellah Youssfi (1995)

Annales de l'institut Fourier

Similarity:

In this paper we consider the regularity problem for the commutators ( [ b , R k ] ) 1 k n where b is a locally integrable function and ( R j ) 1 j n are the Riesz transforms in the n -dimensional euclidean space n . More precisely, we prove that these commutators ( [ b , R k ] ) 1 k n are bounded from L p into the Besov space B ˙ p s , p for 1 &lt; p &lt; + and 0 &lt; s &lt; 1 if and only if b is in the B M O -Triebel-Lizorkin space F ˙ s , p . The reduction of our result to the case p = 2 gives in particular that the commutators ( [ b , R k ] ) 1 k n are bounded form L 2 into the Sobolev space H ˙ s if and only if b ...

Type and cotype of operator spaces

Hun Hee Lee (2008)

Studia Mathematica

Similarity:

We consider two operator space versions of type and cotype, namely S p -type, S q -cotype and type (p,H), cotype (q,H) for a homogeneous Hilbertian operator space H and 1 ≤ p ≤ 2 ≤ q ≤ ∞, generalizing “OH-cotype 2” of G. Pisier. We compute type and cotype of some Hilbertian operator spaces and L p spaces, and we investigate the relationship between a homogeneous Hilbertian space H and operator spaces with cotype (2,H). As applications we consider operator space versions of generalized little...

Calderón-Zygmund operators acting on generalized Carleson measure spaces

Chin-Cheng Lin, Kunchuan Wang (2012)

Studia Mathematica

Similarity:

We study Calderón-Zygmund operators acting on generalized Carleson measure spaces C M O r α , q and show a necessary and sufficient condition for their boundedness. The spaces C M O r α , q are a generalization of BMO, and can be regarded as the duals of homogeneous Triebel-Lizorkin spaces as well.

Weighted norm inequalities for vector-valued singular integrals on homogeneous spaces

Sergio Antonio Tozoni (2004)

Studia Mathematica

Similarity:

Let X be a homogeneous space and let E be a UMD Banach space with a normalized unconditional basis ( e j ) j 1 . Given an operator T from L c ( X ) to L¹(X), we consider the vector-valued extension T̃ of T given by T ̃ ( j f j e j ) = j T ( f j ) e j . We prove a weighted integral inequality for the vector-valued extension of the Hardy-Littlewood maximal operator and a weighted Fefferman-Stein inequality between the vector-valued extensions of the Hardy-Littlewood and the sharp maximal operators, in the context of Orlicz spaces. We give...

One-sided discrete square function

A. de la Torre, J. L. Torrea (2003)

Studia Mathematica

Similarity:

Let f be a measurable function defined on ℝ. For each n ∈ ℤ we consider the average A f ( x ) = 2 - n x x + 2 f . The square function is defined as S f ( x ) = ( n = - | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 . The local version of this operator, namely the operator S f ( x ) = ( n = - 0 | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 , is of interest in ergodic theory and it has been extensively studied. In particular it has been proved [3] that it is of weak type (1,1), maps L p into itself (p > 1) and L into BMO. We prove that the operator S not only maps L into BMO but it also maps BMO into BMO. We also prove that the L p boundedness...

A subelliptic Bourgain–Brezis inequality

Yi Wang, Po-Lam Yung (2014)

Journal of the European Mathematical Society

Similarity:

We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space N L ˙ 1 , Q by L functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group n .

The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces

Suying Liu, Minghua Yang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let L be a non-negative self-adjoint operator acting on L 2 ( n ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A r weight on n × n , 1 < r < . In this article we obtain a weighted atomic decomposition for the weighted Hardy space H L , w p ( n × n ) , 0 < p 1 associated to L . Based on the atomic decomposition, we show the dual relationship between H L , w 1 ( n × n ) and BMO L , w ( n × n ) .

A continuum X such that C ( X ) is not continuously homogeneous

Alejandro Illanes (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A metric continuum X is said to be continuously homogeneous provided that for every two points p , q X there exists a continuous surjective function f : X X such that f ( p ) = q . Answering a question by W.J. Charatonik and Z. Garncarek, in this paper we show a continuum X such that the hyperspace of subcontinua of X , C ( X ) , is not continuously homogeneous.

On the nontrivial solvability of systems of homogeneous linear equations over in ZFC

Jan Šaroch (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we investigate in ZFC the following compactness question: for which uncountable cardinals κ , an arbitrary nonempty system S of homogeneous -linear equations is nontrivially solvable in provided that each of its subsystems of cardinality less than κ is nontrivially solvable in ?

Weighted H p spaces

José García-Cuerva

Similarity:

CONTENTSIntroduction.......................................................................................................................................................... 5Chapter I. Some preliminary lemmas............................................................................................................ 8Chapter II. Weighted H p spaces of analytic functions.......................................................................... 13 1. Behaviour at the boundary..........................................................................................................................