Displaying similar documents to “Duality of measures of non-𝒜-compactness”

Order-theoretic properties of some sets of quasi-measures

Zbigniew Lipecki (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let 𝔐 and be algebras of subsets of a set Ω with 𝔐 , and denote by E ( μ ) the set of all quasi-measure extensions of a given quasi-measure μ on 𝔐 to . We show that E ( μ ) is order bounded if and only if it is contained in a principal ideal in b a ( ) if and only if it is weakly compact and extr E ( μ ) is contained in a principal ideal in b a ( ) . We also establish some criteria for the coincidence of the ideals, in b a ( ) , generated by E ( μ ) and extr E ( μ ) .

A note on the multiplier ideals of monomial ideals

Cheng Gong, Zhongming Tang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 [ x 1 , ... , x n ] be a monomial ideal and 𝒥 ( 𝔞 c ) the multiplier ideal of 𝔞 with coefficient c . Then 𝒥 ( 𝔞 c ) is also a monomial ideal of [ x 1 , ... , x n ] , and the equality 𝒥 ( 𝔞 c ) = 𝔞 implies that 0 < c < n + 1 . We mainly discuss the problem when 𝒥 ( 𝔞 ) = 𝔞 or 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 for all 0 < ε < 1 . It is proved that if 𝒥 ( 𝔞 ) = 𝔞 then 𝔞 is principal, and if 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 holds for all 0 < ε < 1 then 𝔞 = ( x 1 , ... , x n ) . One global result is also obtained. Let 𝔞 ˜ be the ideal sheaf on n - 1 associated with 𝔞 . Then it is proved that the equality 𝒥 ( 𝔞 ˜ ) = 𝔞 ˜ implies that 𝔞 ˜ is principal.

Semi n -ideals of commutative rings

Ece Yetkin Çelikel, Hani A. Khashan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with identity. A proper ideal I is said to be an n -ideal of R if for a , b R , a b I and a 0 imply b I . We give a new generalization of the concept of n -ideals by defining a proper ideal I of R to be a semi n -ideal if whenever a R is such that a 2 I , then a 0 or a I . We give some examples of semi n -ideal and investigate semi n -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new...

Recurrence and mixing recurrence of multiplication operators

Mohamed Amouch, Hamza Lakrimi (2024)

Mathematica Bohemica

Similarity:

Let X be a Banach space, ( X ) the algebra of bounded linear operators on X and ( J , · J ) an admissible Banach ideal of ( X ) . For T ( X ) , let L J , T and R J , T ( J ) denote the left and right multiplication defined by L J , T ( A ) = T A and R J , T ( A ) = A T , respectively. In this paper, we study the transmission of some concepts related to recurrent operators between T ( X ) , and their elementary operators L J , T and R J , T . In particular, we give necessary and sufficient conditions for L J , T and R J , T to be sequentially recurrent. Furthermore, we prove that L J , T is recurrent...

Ideals in big Lipschitz algebras of analytic functions

Thomas Vils Pedersen (2004)

Studia Mathematica

Similarity:

For 0 < γ ≤ 1, let Λ γ be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let J γ ( E , Q ) be the closed ideal in Λ γ consisting of those functions f Λ γ for which (i) f = 0 on E, (ii) | f ( z ) - f ( w ) | = o ( | z - w | γ ) as d(z,E),d(w,E) → 0, (iii) f / Q Λ γ . Also, for a closed ideal I in Λ γ , let E I = z ∈ : f(z) = 0 for every f ∈ I and let Q I be the greatest common divisor of the inner parts of non-zero functions...

2-summing multiplication operators

Dumitru Popa (2013)

Studia Mathematica

Similarity:

Let 1 ≤ p < ∞, = ( X ) n be a sequence of Banach spaces and l p ( ) the coresponding vector valued sequence space. Let = ( X ) n , = ( Y ) n be two sequences of Banach spaces, = ( V ) n , Vₙ: Xₙ → Yₙ, a sequence of bounded linear operators and 1 ≤ p,q < ∞. We define the multiplication operator M : l p ( ) l q ( ) by M ( ( x ) n ) : = ( V ( x ) ) n . We give necessary and sufficient conditions for M to be 2-summing when (p,q) is one of the couples (1,2), (2,1), (2,2), (1,1), (p,1), (p,2), (2,p), (1,p), (p,q); in the last case 1 < p < 2, 1 < q < ∞. ...

The strong persistence property and symbolic strong persistence property

Mehrdad Nasernejad, Kazem Khashyarmanesh, Leslie G. Roberts, Jonathan Toledo (2022)

Czechoslovak Mathematical Journal

Similarity:

Let I be an ideal in a commutative Noetherian ring R . Then the ideal I has the strong persistence property if and only if ( I k + 1 : R I ) = I k for all k , and I has the symbolic strong persistence property if and only if ( I ( k + 1 ) : R I ( 1 ) ) = I ( k ) for all k , where I ( k ) denotes the k th symbolic power of I . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial...

Some generalizations of Olivier's theorem

Alain Faisant, Georges Grekos, Ladislav Mišík (2016)

Mathematica Bohemica

Similarity:

Let n = 1 a n be a convergent series of positive real numbers. L. Olivier proved that if the sequence ( a n ) is non-increasing, then lim n n a n = 0 . In the present paper: (a) We formulate and prove a necessary and sufficient condition for having lim n n a n = 0 ; Olivier’s theorem is a consequence of our Theorem . (b) We prove properties analogous to Olivier’s property when the usual convergence is replaced by the -convergence, that is a convergence according to an ideal of subsets of . Again, Olivier’s theorem is a consequence...

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

Augmentation quotients for Burnside rings of generalized dihedral groups

Shan Chang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite abelian group of odd order, 𝒟 be its generalized dihedral group, i.e., the semidirect product of C 2 acting on H by inverting elements, where C 2 is the cyclic group of order two. Let Ω ( 𝒟 ) be the Burnside ring of 𝒟 , Δ ( 𝒟 ) be the augmentation ideal of Ω ( 𝒟 ) . Denote by Δ n ( 𝒟 ) and Q n ( 𝒟 ) the n th power of Δ ( 𝒟 ) and the n th consecutive quotient group Δ n ( 𝒟 ) / Δ n + 1 ( 𝒟 ) , respectively. This paper provides an explicit -basis for Δ n ( 𝒟 ) and determines the isomorphism class of Q n ( 𝒟 ) for each positive integer n .

Decompositions for real Banach spaces with small spaces of operators

Manuel González, José M. Herrera (2007)

Studia Mathematica

Similarity:

We consider real Banach spaces X for which the quotient algebra (X)/ℐn(X) is finite-dimensional, where ℐn(X) stands for the ideal of inessential operators on X. We show that these spaces admit a decomposition as a finite direct sum of indecomposable subspaces X i for which ( X i ) / n ( X i ) is isomorphic as a real algebra to either the real numbers ℝ, the complex numbers ℂ, or the quaternion numbers ℍ. Moreover, the set of subspaces X i can be divided into subsets in such a way that if X i and X j are in different...

The ideal of p-compact operators: a tensor product approach

Daniel Galicer, Silvia Lassalle, Pablo Turco (2012)

Studia Mathematica

Similarity:

We study the space of p-compact operators, p , using the theory of tensor norms and operator ideals. We prove that p is associated to / d p , the left injective associate of the Chevet-Saphar tensor norm d p (which is equal to g p ' ' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that p ( E ; F ) is equal to q ( E ; F ) for a wide range of values of p and q, and show that our results...

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Similarity:

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the...

Depth and Stanley depth of the facet ideals of some classes of simplicial complexes

Xiaoqi Wei, Yan Gu (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Δ n , d (resp. Δ n , d ' ) be the simplicial complex and the facet ideal I n , d = ( x 1 x d , x d - k + 1 x 2 d - k , ... , x n - d + 1 x n ) (resp. J n , d = ( x 1 x d , x d - k + 1 x 2 d - k , ... , x n - 2 d + 2 k + 1 x n - d + 2 k , x n - d + k + 1 x n x 1 x k ) ). When d 2 k + 1 , we give the exact formulas to compute the depth and Stanley depth of quotient rings S / J n , d and S / I n , d t for all t 1 . When d = 2 k , we compute the depth and Stanley depth of quotient rings S / J n , d and S / I n , d , and give lower bounds for the depth and Stanley depth of quotient rings S / I n , d t for all t 1 .