Displaying similar documents to “Absolute convergence of multiple Fourier integrals”

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

Similarity:

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

Multilinear Fourier multipliers with minimal Sobolev regularity, I

Loukas Grafakos, Hanh Van Nguyen (2016)

Colloquium Mathematicae

Similarity:

We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces H p k , 0 < p k 1 , to Lebesgue spaces L p . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral...

Right inverses for partial differential operators on Fourier hyperfunctions

Michael Langenbruch (2007)

Studia Mathematica

Similarity:

We characterize the partial differential operators P(D) admitting a continuous linear right inverse in the space of Fourier hyperfunctions by means of a dual (Ω̅)-type estimate valid for the bounded holomorphic functions on the characteristic variety V P near d . The estimate can be transferred to plurisubharmonic functions and is equivalent to a uniform (local) Phragmén-Lindelöf-type condition.

Uniform convergence of N-dimensional Walsh-Fourier series

U. Goginava (2005)

Studia Mathematica

Similarity:

We establish conditions on the partial moduli of continuity which guarantee uniform convergence of the N-dimensional Walsh-Fourier series of functions f from the class C W ( I N ) i = 1 N B V i , p ( n ) , where p(n)↑ ∞ as n → ∞.

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

Bases in spaces of analytic germs

Michael Langenbruch (2012)

Annales Polonici Mathematici

Similarity:

We prove precise decomposition results and logarithmically convex estimates in certain weighted spaces of holomorphic germs near ℝ. These imply that the spaces have a basis and are tamely isomorphic to the dual of a power series space of finite type which can be calculated in many situations. Our results apply to the Gelfand-Shilov spaces S ¹ α and S α for α > 0 and to the spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions.

On the diametral dimension of weighted spaces of analytic germs

Michael Langenbruch (2016)

Studia Mathematica

Similarity:

We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces S ¹ α and S α for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

Operational calculus and Fourier transform on Boehmians

V. Karunakaran, R. Roopkumar (2005)

Colloquium Mathematicae

Similarity:

We define various operations on the space of ultra Boehmians like multiplication with certain analytic functions which are Fourier transforms of compactly supported distributions, polynomials, and characters ( e i s t , s , t ) , translation, differentiation. We also prove that the Fourier transform on the space of ultra Boehmians has all the operational properties as in the classical theory.

A necessary condition for HK-integrability of the Fourier sine transform function

Juan H. Arredondo, Manuel Bernal, Maria G. Morales (2025)

Czechoslovak Mathematical Journal

Similarity:

The paper is concerned with integrability of the Fourier sine transform function when f BV 0 ( ) , where BV 0 ( ) is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of f to be integrable in the Henstock-Kurzweil sense, it is necessary that f / x L 1 ( ) . We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.

Universally divergent Fourier series via Landau's extremal functions

Gerd Herzog, Peer Chr. Kunstmann (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the existence of functions f A ( 𝔻 ) , the Fourier series of which being universally divergent on countable subsets of 𝕋 = 𝔻 . The proof is based on a uniform estimate of the Taylor polynomials of Landau’s extremal functions on 𝕋 { 1 } .

Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in ℝ³

E. Ferreyra, T. Godoy, M. Urciuolo (2004)

Studia Mathematica

Similarity:

Let φ:ℝ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let Σ = (x,φ(x)): |x| ≤ 1 and let σ be the Borel measure on Σ defined by σ ( A ) = B χ A ( x , φ ( x ) ) d x where B is the unit open ball in ℝ² and dx denotes the Lebesgue measure on ℝ². We show that the composition of the Fourier transform in ℝ³ followed by restriction to Σ defines a bounded operator from L p ( ³ ) to L q ( Σ , d σ ) for certain p,q. For m ≥ 6 the results are sharp except for some border points.

Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space

Jae Gil Choi, Sang Kil Shim (2023)

Czechoslovak Mathematical Journal

Similarity:

We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space ( H , B , ν ) . An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space B . Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in...

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations

Fabio Nicola (2010)

Studia Mathematica

Similarity:

We study Fourier integral operators of Hörmander’s type acting on the spaces L p ( d ) c o m p , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in L p . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on L p ( d ) c o m p if the mapping x x Φ ( x , η ) is constant on the fibres, of codimension r,...

Maximal operators of Fejér means of double Vilenkin-Fourier series

István Blahota, György Gát, Ushangi Goginava (2007)

Colloquium Mathematicae

Similarity:

The main aim of this paper is to prove that the maximal operator σ * : = s u p | σ n , n | of the Fejér means of the double Vilenkin-Fourier series is not bounded from the Hardy space H 1 / 2 to the space weak- L 1 / 2 .

The degree of approximation by Hausdorff means of a conjugate Fourier series

Sergiusz Kęska (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The purpose of this paper is to analyze the degree of approximation of a function f ¯ that is a conjugate of a function f belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.

On the Fejér means of bounded Ciesielski systems

Ferenc Weisz (2001)

Studia Mathematica

Similarity:

We investigate the bounded Ciesielski systems, which can be obtained from the spline systems of order (m,k) in the same way as the Walsh system arises from the Haar system. It is shown that the maximal operator of the Fejér means of the Ciesielski-Fourier series is bounded from the Hardy space H p to L p if 1/2 < p < ∞ and m ≥ 0, |k| ≤ m + 1. Moreover, it is of weak type (1,1). As a consequence, the Fejér means of the Ciesielski-Fourier series of a function f converges to f a.e. if...

The distribution of Fourier coefficients of cusp forms over sparse sequences

Huixue Lao, Ayyadurai Sankaranarayanan (2014)

Acta Arithmetica

Similarity:

Let λ f ( n ) be the nth normalized Fourier coefficient of a holomorphic Hecke eigenform f ( z ) S k ( Γ ) . We establish that n x λ f 2 ( n j ) = c j x + O ( x 1 - 2 / ( ( j + 1 ) 2 + 1 ) ) for j = 2,3,4, which improves the previous results. For j = 2, we even establish a better result.

A multiplier theorem for Fourier series in several variables

Nakhle Asmar, Florence Newberger, Saleem Watson (2006)

Colloquium Mathematicae

Similarity:

We define a new type of multiplier operators on L p ( N ) , where N is the N-dimensional torus, and use tangent sequences from probability theory to prove that the operator norms of these multipliers are independent of the dimension N. Our construction is motivated by the conjugate function operator on L p ( N ) , to which the theorem applies as a particular example.