Continuity in the Alexiewicz norm
Erik Talvila (2006)
Mathematica Bohemica
Similarity:
If is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of is where the supremum is taken over all intervals . Define the translation by . Then tends to as tends to , i.e., is continuous in the Alexiewicz norm. For particular functions, can tend to 0 arbitrarily slowly. In general, as , where is the oscillation of . It is shown that if is a primitive of then . An example shows that the function need not be in . However, if...