Displaying similar documents to “Bases in spaces of analytic germs”

On the diametral dimension of weighted spaces of analytic germs

Michael Langenbruch (2016)

Studia Mathematica

Similarity:

We prove precise estimates for the diametral dimension of certain weighted spaces of germs of holomorphic functions defined on strips near ℝ. This implies a full isomorphic classification for these spaces including the Gelfand-Shilov spaces S ¹ α and S α for α > 0. Moreover we show that the classical spaces of Fourier hyperfunctions and of modified Fourier hyperfunctions are not isomorphic.

Right inverses for partial differential operators on Fourier hyperfunctions

Michael Langenbruch (2007)

Studia Mathematica

Similarity:

We characterize the partial differential operators P(D) admitting a continuous linear right inverse in the space of Fourier hyperfunctions by means of a dual (Ω̅)-type estimate valid for the bounded holomorphic functions on the characteristic variety V P near d . The estimate can be transferred to plurisubharmonic functions and is equivalent to a uniform (local) Phragmén-Lindelöf-type condition.

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

The distribution of Fourier coefficients of cusp forms over sparse sequences

Huixue Lao, Ayyadurai Sankaranarayanan (2014)

Acta Arithmetica

Similarity:

Let λ f ( n ) be the nth normalized Fourier coefficient of a holomorphic Hecke eigenform f ( z ) S k ( Γ ) . We establish that n x λ f 2 ( n j ) = c j x + O ( x 1 - 2 / ( ( j + 1 ) 2 + 1 ) ) for j = 2,3,4, which improves the previous results. For j = 2, we even establish a better result.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

Similarity:

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations

Fabio Nicola (2010)

Studia Mathematica

Similarity:

We study Fourier integral operators of Hörmander’s type acting on the spaces L p ( d ) c o m p , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in L p . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on L p ( d ) c o m p if the mapping x x Φ ( x , η ) is constant on the fibres, of codimension r,...

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

On the non-equivalence of rearranged Walsh and trigonometric systems in L p

Aicke Hinrichs, Jörg Wenzel (2003)

Studia Mathematica

Similarity:

We consider the question of whether the trigonometric system can be equivalent to some rearrangement of the Walsh system in L p for some p ≠ 2. We show that this question is closely related to a combinatorial problem. This enables us to prove non-equivalence for a number of rearrangements. Previously this was known for the Walsh-Paley order only.

Marcinkiewicz multipliers of higher variation and summability of operator-valued Fourier series

Earl Berkson (2014)

Studia Mathematica

Similarity:

Let f V r ( ) r ( ) , where, for 1 ≤ r < ∞, V r ( ) (resp., r ( ) ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values,...

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

Similarity:

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative...

Universally divergent Fourier series via Landau's extremal functions

Gerd Herzog, Peer Chr. Kunstmann (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the existence of functions f A ( 𝔻 ) , the Fourier series of which being universally divergent on countable subsets of 𝕋 = 𝔻 . The proof is based on a uniform estimate of the Taylor polynomials of Landau’s extremal functions on 𝕋 { 1 } .

On L p integrability and convergence of trigonometric series

Dansheng Yu, Ping Zhou, Songping Zhou (2007)

Studia Mathematica

Similarity:

We first give a necessary and sufficient condition for x - γ ϕ ( x ) L p , 1 < p < ∞, 1/p - 1 < γ < 1/p, where ϕ(x) is the sum of either k = 1 a k c o s k x or k = 1 b k s i n k x , under the condition that λₙ (where λₙ is aₙ or bₙ respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients λₙ and the sum function ϕ(x) under the condition that λₙ ∈ MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of ϕ(x)...

Addendum to "Necessary condition for Kostyuchenko type systems to be a basis in Lebesgue spaces" (Colloq. Math. 127 (2012), 105-109)

Aydin Sh. Shukurov (2014)

Colloquium Mathematicae

Similarity:

It is well known that if φ(t) ≡ t, then the system φ ( t ) n = 0 is not a Schauder basis in L₂[0,1]. It is natural to ask whether there is a function φ for which the power system φ ( t ) n = 0 is a basis in some Lebesgue space L p . The aim of this short note is to show that the answer to this question is negative.

Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space

Jae Gil Choi, Sang Kil Shim (2023)

Czechoslovak Mathematical Journal

Similarity:

We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space ( H , B , ν ) . An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space B . Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in...

A multiplier theorem for Fourier series in several variables

Nakhle Asmar, Florence Newberger, Saleem Watson (2006)

Colloquium Mathematicae

Similarity:

We define a new type of multiplier operators on L p ( N ) , where N is the N-dimensional torus, and use tangent sequences from probability theory to prove that the operator norms of these multipliers are independent of the dimension N. Our construction is motivated by the conjugate function operator on L p ( N ) , to which the theorem applies as a particular example.

Complete pluripolar graphs in N

Nguyen Quang Dieu, Phung Van Manh (2014)

Annales Polonici Mathematici

Similarity:

Let F be the Cartesian product of N closed sets in ℂ. We prove that there exists a function g which is continuous on F and holomorphic on the interior of F such that Γ g ( F ) : = ( z , g ( z ) ) : z F is complete pluripolar in N + 1 . Using this result, we show that if D is an analytic polyhedron then there exists a bounded holomorphic function g such that Γ g ( D ) is complete pluripolar in N + 1 . These results are high-dimensional analogs of the previous ones due to Edlund [Complete pluripolar curves and graphs, Ann. Polon. Math....