Displaying similar documents to “A note on arc-disjoint cycles in tournaments”

On short cycles in triangle-free oriented graphs

Yurong Ji, Shufei Wu, Hui Song (2018)

Czechoslovak Mathematical Journal

Similarity:

An orientation of a simple graph is referred to as an oriented graph. Caccetta and Häggkvist conjectured that any digraph on n vertices with minimum outdegree d contains a directed cycle of length at most n / d . In this paper, we consider short cycles in oriented graphs without directed triangles. Suppose that α 0 is the smallest real such that every n -vertex digraph with minimum outdegree at least α 0 n contains a directed triangle. Let ϵ < ( 3 - 2 α 0 ) / ( 4 - 2 α 0 ) be a positive real. We show that if D is an oriented graph...

Maximum number of limit cycles for generalized Liénard polynomial differential systems

Aziza Berbache, Ahmed Bendjeddou, Sabah Benadouane (2021)

Mathematica Bohemica

Similarity:

We consider limit cycles of a class of polynomial differential systems of the form x ˙ = y , y ˙ = - x - ε ( g 21 ( x ) y 2 α + 1 + f 21 ( x ) y 2 β ) - ε 2 ( g 22 ( x ) y 2 α + 1 + f 22 ( x ) y 2 β ) , where β and α are positive integers, g 2 j and f 2 j have degree m and n , respectively, for each j = 1 , 2 , and ε is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center x ˙ = y , y ˙ = - x using the averaging theory of first and second order.

Majority choosability of 1-planar digraph

Weihao Xia, Jihui Wang, Jiansheng Cai (2023)

Czechoslovak Mathematical Journal

Similarity:

A majority coloring of a digraph D with k colors is an assignment π : V ( D ) { 1 , 2 , , k } such that for every v V ( D ) we have π ( w ) = π ( v ) for at most half of all out-neighbors w N + ( v ) . A digraph D is majority k -choosable if for any assignment of lists of colors of size k to the vertices, there is a majority coloring of D from these lists. We prove that if U ( D ) is a 1-planar graph without a 4-cycle, then D is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable.

Acyclic 4-choosability of planar graphs without 4-cycles

Yingcai Sun, Min Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G . In other words, each cycle of G must be colored with at least three colors. Given a list assignment L = { L ( v ) : v V } , if there exists an acyclic coloring π of G such that π ( v ) L ( v ) for all v V , then we say that G is acyclically L -colorable. If G is acyclically L -colorable for any list assignment L with | L ( v ) | k for all v V , then G is acyclically k -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without...

Self-diclique circulant digraphs

Marietjie Frick, Bernardo Llano, Rita Zuazua (2015)

Mathematica Bohemica

Similarity:

We study a particular digraph dynamical system, the so called digraph diclique operator. Dicliques have frequently appeared in the literature the last years in connection with the construction and analysis of different types of networks, for instance biochemical, neural, ecological, sociological and computer networks among others. Let D = ( V , A ) be a reflexive digraph (or network). Consider X and Y (not necessarily disjoint) nonempty subsets of vertices (or nodes) of D . A disimplex K ( X , Y ) of D is...

A note on a conjecture on niche hypergraphs

Pawaton Kaemawichanurat, Thiradet Jiarasuksakun (2019)

Czechoslovak Mathematical Journal

Similarity:

For a digraph D , the niche hypergraph N ( D ) of D is the hypergraph having the same set of vertices as D and the set of hyperedges E ( N ( D ) ) = { e V ( D ) : | e | 2 and there exists a vertex v such that e = N D - ( v ) or e = N D + ( v ) } . A digraph is said to be acyclic if it has no directed cycle as a subdigraph. For a given hypergraph , the niche number n ^ ( ) is the smallest integer such that together with n ^ ( ) isolated vertices is the niche hypergraph of an acyclic digraph. C. Garske, M. Sonntag and H. M. Teichert (2016) conjectured that for a linear...

On the tree structure of the power digraphs modulo n

Amplify Sawkmie, Madan Mohan Singh (2015)

Czechoslovak Mathematical Journal

Similarity:

For any two positive integers n and k 2 , let G ( n , k ) be a digraph whose set of vertices is { 0 , 1 , ... , n - 1 } and such that there is a directed edge from a vertex a to a vertex b if a k b ( mod n ) . Let n = i = 1 r p i e i be the prime factorization of n . Let P be the set of all primes dividing n and let P 1 , P 2 P be such that P 1 P 2 = P and P 1 P 2 = . A fundamental constituent of G ( n , k ) , denoted by G P 2 * ( n , k ) , is a subdigraph of G ( n , k ) induced on the set of vertices which are multiples of p i P 2 p i and are relatively prime to all primes q P 1 . L. Somer and M. Křížek proved that the trees attached...

The classification of finite groups by using iteration digraphs

Uzma Ahmad, Muqadas Moeen (2016)

Czechoslovak Mathematical Journal

Similarity:

A digraph is associated with a finite group by utilizing the power map f : G G defined by f ( x ) = x k for all x G , where k is a fixed natural number. It is denoted by γ G ( n , k ) . In this paper, the generalized quaternion and 2 -groups are studied. The height structure is discussed for the generalized quaternion. The necessary and sufficient conditions on a power digraph of a 2 -group are determined for a 2 -group to be a generalized quaternion group. Further, the classification of two generated 2 -groups as abelian...

The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths

Halina Bielak, Kinga Dąbrowska (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The Ramsey number R ( G , H ) for a pair of graphs G and H is defined as the smallest integer n such that, for any graph F on n vertices, either F contains G or F ¯ contains H as a subgraph, where F ¯ denotes the complement of F . We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers R ( K 1 + L n , P m ) and R ( K 1 + L n , C m ) for some integers m , n , where L n is...

Characterization of cycle domains via Kobayashi hyperbolicity

Gregor Fels, Alan Huckleberry (2005)

Bulletin de la Société Mathématique de France

Similarity:

A real form G of a complex semi-simple Lie group G has only finitely many orbits in any given G -flag manifold Z = G / Q . The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits D generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of D which, with very few well-understood exceptions, are parameterized by the Wolf cycle...

On the heterochromatic number of circulant digraphs

Hortensia Galeana-Sánchez, Víctor Neumann-Lara (2004)

Discussiones Mathematicae Graph Theory

Similarity:

The heterochromatic number hc(D) of a digraph D, is the minimum integer k such that for every partition of V(D) into k classes, there is a cyclic triangle whose three vertices belong to different classes. For any two integers s and n with 1 ≤ s ≤ n, let D n , s be the oriented graph such that V ( D n , s ) is the set of integers mod 2n+1 and A ( D n , s ) = ( i , j ) : j - i 1 , 2 , . . . , n s . . In this paper we prove that h c ( D n , s ) 5 for n ≥ 7. The bound is tight since equality holds when s ∈ n,[(2n+1)/3].

Hamiltonicity of cubic Cayley graphs

Henry Glover, Dragan Marušič (2007)

Journal of the European Mathematical Society

Similarity:

Following a problem posed by Lovász in 1969, it is believed that every finite connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from finite groups having a ( 2 , s , 3 ) -presentation, that is, for groups G = a , b a 2 = 1 , b s = 1 , ( a b ) 3 = 1 , generated by an involution a and an element b of order s 3 such that their product a b has order 3 . More precisely, it is shown that the Cayley graph X = Cay ( G , { a , b , b - 1 } ) has a Hamilton cycle when | G | (and thus s ) is congruent to 2 modulo 4, and has a...

Signed domination and signed domatic numbers of digraphs

Lutz Volkmann (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a finite and simple digraph with the vertex set V(D), and let f:V(D) → -1,1 be a two-valued function. If x N ¯ [ v ] f ( x ) 1 for each v ∈ V(D), where N¯[v] consists of v and all vertices of D from which arcs go into v, then f is a signed dominating function on D. The sum f(V(D)) is called the weight w(f) of f. The minimum of weights w(f), taken over all signed dominating functions f on D, is the signed domination number γ S ( D ) of D. A set f , f , . . . , f d of signed dominating functions on D with the property that...

Spectral radius and Hamiltonicity of graphs with large minimum degree

Vladimir Nikiforov (2016)

Czechoslovak Mathematical Journal

Similarity:

Let G be a graph of order n and λ ( G ) the spectral radius of its adjacency matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in G . One of the main results of the paper is the following theorem: Let k 2 , n k 3 + k + 4 , and let G be a graph of order n , with minimum degree δ ( G ) k . If λ ( G ) n - k - 1 , then G has a Hamiltonian cycle, unless G = K 1 ( K n - k - 1 + K k ) or G = K k ( K n - 2 k + K ¯ k ) .