Displaying similar documents to “A note on minimal zero-sum sequences over ℤ”

On some properties of three-dimensional minimal sets in 4

Tien Duc Luu (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove in this paper the Hölder regularity of Almgren minimal sets of dimension 3 in 4 around a 𝕐 -point and the existence of a point of particular type of a Mumford-Shah minimal set in 4 , which is very close to a 𝕋 . This will give a local description of minimal sets of dimension 3 in 4 around a singular point and a property of Mumford-Shah minimal sets in 4 .

Definable stratification satisfying the Whitney property with exponent 1

Beata Kocel-Cynk (2007)

Annales Polonici Mathematici

Similarity:

We prove that for a finite collection of sets A , . . . , A s k + n definable in an o-minimal structure there exists a compatible definable stratification such that for any stratum the fibers of its projection onto k satisfy the Whitney property with exponent 1.

A note on generalized projections in c₀

Beata Deręgowska, Barbara Lewandowska (2014)

Annales Polonici Mathematici

Similarity:

Let V ⊂ Z be two subspaces of a Banach space X. We define the set of generalized projections by V ( X , Z ) : = P ( X , Z ) : P | V = i d . Now let X = c₀ or l m , Z:= kerf for some f ∈ X* and V : = Z l (n < m). The main goal of this paper is to discuss existence, uniqueness and strong uniqueness of a minimal generalized projection in this case. Also formulas for the relative generalized projection constant and the strong uniqueness constant will be given (cf. J. Blatter and E. W. Cheney [Ann. Mat. Pura Appl. 101 (1974), 215-227] and...

Zero-set property of o-minimal indefinitely Peano differentiable functions

Andreas Fischer (2008)

Annales Polonici Mathematici

Similarity:

Given an o-minimal expansion ℳ of a real closed field R which is not polynomially bounded. Let denote the definable indefinitely Peano differentiable functions. If we further assume that ℳ admits cell decomposition, each definable closed subset A of Rⁿ is the zero-set of a function f:Rⁿ → R. This implies approximation of definable continuous functions and gluing of functions defined on closed definable sets.

Minimality properties of Tsirelson type spaces

Denka Kutzarova, Denny H. Leung, Antonis Manoussakis, Wee-Kee Tang (2008)

Studia Mathematica

Similarity:

We study minimality properties of partly modified mixed Tsirelson spaces. A Banach space with a normalized basis ( e k ) is said to be subsequentially minimal if for every normalized block basis ( x k ) of ( e k ) , there is a further block basis ( y k ) of ( x k ) such that ( y k ) is equivalent to a subsequence of ( e k ) . Sufficient conditions are given for a partly modified mixed Tsirelson space to be subsequentially minimal, and connections with Bourgain’s ℓ¹-index are established. It is also shown that a large class of...

A discrepancy principle for Tikhonov regularization with approximately specified data

M. Thamban Nair, Eberhard Schock (1998)

Annales Polonici Mathematici

Similarity:

Many discrepancy principles are known for choosing the parameter α in the regularized operator equation ( T * T + α I ) x α δ = T * y δ , | y - y δ | δ , in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and T * y δ are approximated by Aₙ and z δ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results...

On a magnetic characterization of spectral minimal partitions

Bernard Helffer, Thomas Hoffmann-Ostenhof (2013)

Journal of the European Mathematical Society

Similarity:

Given a bounded open set Ω in n (or in a Riemannian manifold) and a partition of Ω by k open sets D j , we consider the quantity 𝚖𝚊𝚡 j λ ( D j ) where λ ( D j ) is the ground state energy of the Dirichlet realization of the Laplacian in D j . If we denote by k ( Ω ) the infimum over all the k -partitions of 𝚖𝚊𝚡 j λ ( D j ) , a minimal k -partition is then a partition which realizes the infimum. When k = 2 , we find the two nodal domains of a second eigenfunction, but the analysis of higher k ’s is non trivial and quite interesting. In this...

The minimal resultant locus

Robert Rumely (2015)

Acta Arithmetica

Similarity:

Let K be a complete, algebraically closed nonarchimedean valued field, and let φ(z) ∈ K(z) have degree d ≥ 2. We study how the resultant of φ varies under changes of coordinates. For γ ∈ GL₂(K), we show that the map γ o r d ( R e s ( φ γ ) ) factors through a function o r d R e s φ ( · ) on the Berkovich projective line, which is piecewise affine and convex up. The minimal resultant is achieved either at a single point in P ¹ K , or on a segment, and the minimal resultant locus is contained in the tree in P ¹ K spanned by the fixed points...

O-minimal fields with standard part map

Jana Maříková (2010)

Fundamenta Mathematicae

Similarity:

Let R be an o-minimal field and V a proper convex subring with residue field k and standard part (residue) map st: V → k. Let k i n d be the expansion of k by the standard parts of the definable relations in R. We investigate the definable sets in k i n d and conditions on (R,V) which imply o-minimality of k i n d . We also show that if R is ω-saturated and V is the convex hull of ℚ in R, then the sets definable in k i n d are exactly the standard parts of the sets definable in (R,V).

Minimal 𝒮 -universality criteria may vary in size

Noam D. Elkies, Daniel M. Kane, Scott Duke Kominers (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this note, we give simple examples of sets 𝒮 of quadratic forms that have minimal 𝒮 -universality criteria of multiple cardinalities. This answers a question of Kim, Kim, and Oh [KKO05] in the negative.

Minimal systems and distributionally scrambled sets

Piotr Oprocha (2012)

Bulletin de la Société Mathématique de France

Similarity:

In this paper we investigate numerous constructions of minimal systems from the point of view of ( 1 , 2 ) -chaos (but most of our results concern the particular cases of distributional chaos of type 1 and 2 ). We consider standard classes of systems, such as Toeplitz flows, Grillenberger K -systems or Blanchard-Kwiatkowski extensions of the Chacón flow, proving that all of them are DC2. An example of DC1 minimal system with positive topological entropy is also introduced. The above mentioned results...

Minimal models for d -actions

Bartosz Frej, Agata Kwaśnicka (2008)

Colloquium Mathematicae

Similarity:

We prove that on a metrizable, compact, zero-dimensional space every d -action with no periodic points is measurably isomorphic to a minimal d -action with the same, i.e. affinely homeomorphic, simplex of measures.

A note on functional tightness and minitightness of space of the G -permutation degree

Dimitrios N. Georgiou, Nodirbek K. Mamadaliev, Rustam M. Zhuraev (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the behavior of the minimal tightness and functional tightness of topological spaces under the influence of the functor of the permutation degree. Analytically: a) We introduce the notion of τ -open sets and investigate some basic properties of them. b) We prove that if the map f : X Y is τ -continuous, then the map S P n f : S P n X S P n Y is also τ -continuous. c) We show that the functor S P n preserves the functional tightness and the minimal tightness of compacts. d) Finally, we give some facts and properties...

A uniform dichotomy for generic SL ( 2 , ) cocycles over a minimal base

Artur Avila, Jairo Bochi (2007)

Bulletin de la Société Mathématique de France

Similarity:

We consider continuous SL ( 2 , ) -cocycles over a minimal homeomorphism of a compact set K of finite dimension. We show that the generic cocycle either is uniformly hyperbolic or has uniform subexponential growth.

On computation of minimal free resolutions over solvable polynomial algebras

Huishi Li (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let A = K [ a 1 , ... , a n ] be a (noncommutative) solvable polynomial algebra over a field K in the sense of A. Kandri-Rody and V. Weispfenning [Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1–26]. This paper presents a comprehensive study on the computation of minimal free resolutions of modules over A in the following two cases: (1) A = p A p is an -graded algebra with the degree-0 homogeneous part A 0 = K ; (2) A is an -filtered algebra with the filtration { F p A } p determined by...

Algebra in the superextensions of twinic groups

Taras Banakh, Volodymyr Gavrylkiv

Similarity:

Given a group X we study the algebraic structure of the compact right-topological semigroup λ(X) consisting of all maximal linked systems on X. This semigroup contains the semigroup β(X) of ultrafilters as a closed subsemigroup. We construct a faithful representation of the semigroup λ(X) in the semigroup ( X ) ( X ) of all self-maps of the power-set (X) and show that the image of λ(X) in ( X ) ( X ) coincides with the semigroup E n d λ ( ( X ) ) of all functions f: (X) → (X) that are equivariant, monotone and symmetric...

Best approximation in spaces of bounded linear operators

Grzegorz Lewicki

Similarity:

CONTENTSChapter 0...............................................................................................................................................................................5   0.1. Introduction..................................................................................................................................................................5   0.2. Preliminary results.......................................................................................................................................................9Chapter...

Product property for capacities in N

Mirosław Baran, Leokadia Bialas-Ciez (2012)

Annales Polonici Mathematici

Similarity:

The paper deals with logarithmic capacities, an important tool in pluripotential theory. We show that a class of capacities, which contains the L-capacity, has the following product property: C ν ( E × E ) = m i n ( C ν ( E ) , C ν ( E ) ) , where E j and ν j are respectively a compact set and a norm in N j (j = 1,2), and ν is a norm in N + N , ν = ν₁⊕ₚ ν₂ with some 1 ≤ p ≤ ∞. For a convex subset E of N , denote by C(E) the standard L-capacity and by ω E the minimal width of E, that is, the minimal Euclidean distance between two supporting hyperplanes...

On a problem concerning quasianalytic local rings

Hassan Sfouli (2014)

Annales Polonici Mathematici

Similarity:

Let (ₙ)ₙ be a quasianalytic differentiable system. Let m ∈ ℕ. We consider the following problem: let f m and f̂ be its Taylor series at 0 m . Split the set m of exponents into two disjoint subsets A and B, m = A B , and decompose the formal series f̂ into the sum of two formal series G and H, supported by A and B, respectively. Do there exist g , h m with Taylor series at zero G and H, respectively? The main result of this paper is the following: if we have a positive answer to the above problem for some...

Varieties of minimal rational tangents of codimension 1

Jun-Muk Hwang (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  X be a uniruled projective manifold and let  x be a general point. The main result of [2] says that if the ( - K X ) -degrees (i.e., the degrees with respect to the anti-canonical bundle of  X ) of all rational curves through x are at least dim X + 1 , then X is a projective space. In this paper, we study the structure of  X when the ( - K X ) -degrees of all rational curves through x are at least dim X . Our study uses the projective variety 𝒞 x T x ( X ) , called the VMRT at  x , defined as the union of tangent directions to the...

Renormings of c 0 and the minimal displacement problem

Łukasz Piasecki (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The aim of this paper is to show that for every Banach space ( X , · ) containing asymptotically isometric copy of the space c 0 there is a bounded, closed and convex set C X with the Chebyshev radius r ( C ) = 1 such that for every k 1 there exists a k -contractive mapping T : C C with x - T x > 1 1 / k for any x C .