The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Hausdorff dimension of certain self-affine sets”

Multidimensional self-affine sets: non-empty interior and the set of uniqueness

Kevin G. Hare, Nikita Sidorov (2015)

Studia Mathematica

Similarity:

Let M be a d × d real contracting matrix. We consider the self-affine iterated function system Mv-u, Mv+u, where u is a cyclic vector. Our main result is as follows: if | d e t M | 2 - 1 / d , then the attractor A M has non-empty interior. We also consider the set M of points in A M which have a unique address. We show that unless M belongs to a very special (non-generic) class, the Hausdorff dimension of M is positive. For this special class the full description of M is given as well. This paper continues our...

The natural operators of general affine connections into general affine connections

Jan Kurek, Włodzimierz M. Mikulski (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We reduce the problem of describing all f m -natural operators  transforming general affine connections on m -manifolds into general affine ones to the known description of all G L ( 𝐑 m ) -invariant maps 𝐑 m * 𝐑 m k 𝐑 m * k 𝐑 m for k = 1 , 3 .

Self-affine measures and vector-valued representations

Qi-Rong Deng, Xing-Gang He, Ka-Sing Lau (2008)

Studia Mathematica

Similarity:

Let A be a d × d integral expanding matrix and let S j ( x ) = A - 1 ( x + d j ) for some d j d , j = 1,...,m. The iterated function system (IFS) S j j = 1 m generates self-affine measures and scale functions. In general this IFS has overlaps, and it is well known that in many special cases the analysis of such measures or functions is facilitated by expressing them in vector-valued forms with respect to another IFS that satisfies the open set condition. In this paper we prove a general theorem on such representation. The proof...

Uniqueness of Cartesian Products of Compact Convex Sets

Zbigniew Lipecki, Viktor Losert, Jiří Spurný (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let X i , i∈ I, and Y j , j∈ J, be compact convex sets whose sets of extreme points are affinely independent and let φ be an affine homeomorphism of i I X i onto j J Y j . We show that there exists a bijection b: I → J such that φ is the product of affine homeomorphisms of X i onto Y b ( i ) , i∈ I.

On strongly affine extensions of commutative rings

Nabil Zeidi (2020)

Czechoslovak Mathematical Journal

Similarity:

A ring extension R S is said to be strongly affine if each R -subalgebra of S is a finite-type R -algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if R is a quasi-local ring of finite dimension, then R S is integrally closed and strongly affine if and only if R S is a Prüfer extension (i.e. ( R , S ) is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown....

Infinite Iterated Function Systems Depending on a Parameter

Ludwik Jaksztas (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

This paper is motivated by the problem of dependence of the Hausdorff dimension of the Julia-Lavaurs sets J 0 , σ for the map f₀(z) = z²+1/4 on the parameter σ. Using homographies, we imitate the construction of the iterated function system (IFS) whose limit set is a subset of J 0 , σ , given by Urbański and Zinsmeister. The closure of the limit set of our IFS ϕ σ , α n , k is the closure of some family of circles, and if the parameter σ varies, then the behavior of the limit set is similar to the behavior of...

Sufficient conditions for the spectrality of self-affine measures with prime determinant

Jian-Lin Li (2014)

Studia Mathematica

Similarity:

Let μ M , D be a self-affine measure associated with an expanding matrix M and a finite digit set D. We study the spectrality of μ M , D when |det(M)| = |D| = p is a prime. We obtain several new sufficient conditions on M and D for μ M , D to be a spectral measure with lattice spectrum. As an application, we present some properties of the digit sets of integral self-affine tiles, which are connected with a conjecture of Lagarias and Wang.

Hausdorff dimension of affine random covering sets in torus

Esa Järvenpää, Maarit Järvenpää, Henna Koivusalo, Bing Li, Ville Suomala (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We calculate the almost sure Hausdorff dimension of the random covering set lim sup n ( g n + ξ n ) in d -dimensional torus 𝕋 d , where the sets g n 𝕋 d are parallelepipeds, or more generally, linear images of a set with nonempty interior, and ξ n 𝕋 d are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear mappings, holds provided that the sequences of the singular values are decreasing.

On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets

Ludwik Jaksztas (2011)

Fundamenta Mathematicae

Similarity:

Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map g σ . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set J 0 , σ is continuous at σ₀ as the function of the parameter σ ¯ if and only if H D ( J 0 , σ ) 4 / 3 . Since H D ( J 0 , σ ) > 4 / 3 on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of H D ( J 0 , σ ) on an open and dense subset of...

On the Hausdorff Dimension of Topological Subspaces

Tomasz Szarek, Maciej Ślęczka (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is shown that every Polish space X with d i m T X d admits a compact subspace Y such that d i m H Y d where d i m T and d i m H denote the topological and Hausdorff dimensions, respectively.

Univoque sets for real numbers

Fan Lü, Bo Tan, Jun Wu (2014)

Fundamenta Mathematicae

Similarity:

For x ∈ (0,1), the univoque set for x, denoted (x), is defined to be the set of β ∈ (1,2) such that x has only one representation of the form x = x₁/β + x₂/β² + ⋯ with x i 0 , 1 . We prove that for any x ∈ (0,1), (x) contains a sequence β k k 1 increasing to 2. Moreover, (x) is a Lebesgue null set of Hausdorff dimension 1; both (x) and its closure ( x ) ¯ are nowhere dense.

On the Separation Dimension of K ω

Yasunao Hattori, Jan van Mill (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove that t r t K ω > ω + 1 , where trt stands for the transfinite extension of Steinke’s separation dimension. This answers a question of Chatyrko and Hattori.

The (dis)connectedness of products of Hausdorff spaces in the box topology

Vitalij A. Chatyrko (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper the following two propositions are proved: (a) If X α , α A , is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product α A X α can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If X α , α A , is an infinite system of Brown Hausdorff topological spaces then the box product α A X α is also Brown Hausdorff, and hence, it is connected. A space...

The tame automorphism group of an affine quadric threefold acting on a square complex

Cinzia Bisi, Jean-Philippe Furter, Stéphane Lamy (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

We study the group Tame ( SL 2 ) of tame automorphisms of a smooth affine 3 -dimensional quadric, which we can view as the underlying variety of SL 2 ( ) . We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is CAT ( 0 ) and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in Tame ( SL 2 ) is linearizable, and that Tame ( SL 2 ) satisfies the Tits alternative.

The universal tropicalization and the Berkovich analytification

Jeffrey Giansiracusa, Noah Giansiracusa (2022)

Kybernetika

Similarity:

Given an integral scheme X over a non-archimedean valued field k , we construct a universal closed embedding of X into a k -scheme equipped with a model over the field with one element 𝔽 1 (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of X by previous work of the authors, and we show that the set-theoretic tropicalization of X with respect to this universal embedding is the Berkovich analytification X an . Moreover, using the scheme-theoretic...

A two-dimensional univoque set

Martijn de Vrie, Vilmos Komornik (2011)

Fundamenta Mathematicae

Similarity:

Let J ⊂ ℝ² be the set of couples (x,q) with q > 1 such that x has at least one representation of the form x = i = 1 c i q - i with integer coefficients c i satisfying 0 c i < q , i ≥ 1. In this case we say that ( c i ) = c c . . . is an expansion of x in base q. Let U be the set of couples (x,q) ∈ J such that x has exactly one expansion in base q. In this paper we deduce some topological and combinatorial properties of the set U. We characterize the closure of U, and we determine its Hausdorff dimension. For (x,q) ∈ J, we also...

On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets

Juan Rivera-Letelier (2001)

Fundamenta Mathematicae

Similarity:

Given d ≥ 2 consider the family of polynomials P c ( z ) = z d + c for c ∈ ℂ. Denote by J c the Julia set of P c and let d = c | J c i s c o n n e c t e d be the connectedness locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters c d : those for which the critical point 0 is not recurrent by P c and without parabolic cycles. The Hausdorff dimension of J c , denoted by H D ( J c ) , does not depend continuously on c at such c d ; on the other hand the function c H D ( J c ) is analytic in - d . Our first result asserts that there is still some...

Self-affine measures that are L p -improving

Kathryn E. Hare (2015)

Colloquium Mathematicae

Similarity:

A measure is called L p -improving if it acts by convolution as a bounded operator from L q to L² for some q < 2. Interesting examples include Riesz product measures, Cantor measures and certain measures on curves. We show that equicontractive, self-similar measures are L p -improving if and only if they satisfy a suitable linear independence property. Certain self-affine measures are also seen to be L p -improving.

The growth speed of digits in infinite iterated function systems

Chun-Yun Cao, Bao-Wei Wang, Jun Wu (2013)

Studia Mathematica

Similarity:

Let f n 1 be an infinite iterated function system on [0,1] satisfying the open set condition with the open set (0,1) and let Λ be its attractor. Then to any x ∈ Λ (except at most countably many points) corresponds a unique sequence a ( x ) n 1 of integers, called the digit sequence of x, such that x = l i m n f a ( x ) f a ( x ) ( 1 ) . We investigate the growth speed of the digits in a general infinite iterated function system. More precisely, we determine the dimension of the set x Λ : a ( x ) B ( n 1 ) , l i m n a ( x ) = for any infinite subset B ⊂ ℕ, a question posed by...

The canonical constructions of connections on total spaces of fibred manifolds

Włodzimierz M. Mikulski (2024)

Archivum Mathematicum

Similarity:

We classify classical linear connections A ( Γ , Λ , Θ ) on the total space Y of a fibred manifold Y M induced in a natural way by the following three objects: a general connection Γ in Y M , a classical linear connection Λ on M and a linear connection Θ in the vertical bundle V Y Y . The main result says that if dim ( M ) 3 and dim ( Y ) - dim ( M ) 3 then the natural operators A under consideration form the 17 dimensional affine space.

Poincaré inequalities and rigidity for actions on Banach spaces

Piotr Nowak (2015)

Journal of the European Mathematical Society

Similarity:

The aim of this paper is to extend the framework of the spectral method for proving property (T) to the class of reflexive Banach spaces and present a condition implying that every affine isometric action of a given group G on a reflexive Banach space X has a fixed point. This last property is a strong version of Kazhdan’s property (T) and is equivalent to the fact that H 1 ( G , π ) = 0 for every isometric representation π of G on X . The condition is expressed in terms of p -Poincaré constants and we...

Shells of monotone curves

Josef Mikeš, Karl Strambach (2015)

Czechoslovak Mathematical Journal

Similarity:

We determine in n the form of curves C corresponding to strictly monotone functions as well as the components of affine connections for which any image of C under a compact-free group Ω of affinities containing the translation group is a geodesic with respect to . Special attention is paid to the case that Ω contains many dilatations or that C is a curve in 3 . If C is a curve in 3 and Ω is the translation group then we calculate not only the components of the curvature and the Weyl...