Displaying similar documents to “Numerical comparison of unsteady compressible viscous flow in convergent channel”

Consistent streamline residual-based artificial viscosity stabilization for numerical simulation of incompressible turbulent flow by isogeometric analysis

Bohumír Bastl, Marek Brandner, Kristýna Slabá, Eva Turnerová (2022)

Applications of Mathematics

Similarity:

In this paper, we propose a new stabilization technique for numerical simulation of incompressible turbulent flow by solving Reynolds-averaged Navier-Stokes equations closed by the SST k - ω turbulence model. The stabilization scheme is constructed such that it is consistent in the sense used in the finite element method, artificial diffusion is added only in the direction of convection and it is based on a purely nonlinear approach. We present numerical results obtained by our in-house...

A second order unconditionally positive space-time residual distribution method for solving compressible flows on moving meshes

Dobeš, Jiří, Deconinck, Herman

Similarity:

A space-time formulation for unsteady inviscid compressible flow computations in 2D moving geometries is presented. The governing equations in Arbitrary Lagrangian-Eulerian formulation (ALE) are discretized on two layers of space-time finite elements connecting levels n , n + 1 / 2 and n + 1 . The solution is approximated with linear variation in space (P1 triangle) combined with linear variation in time. The space-time residual from the lower layer of elements is distributed to the nodes at level...

Numerical analysis of a Stokes interface problem based on formulation using the characteristic function

Yoshiki Sugitani (2017)

Applications of Mathematics

Similarity:

Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error...

On uniqueness for bounded channel flows of viscoelastic fluids

Marshall J. Leitman, Epifanio G. Virga (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

It was conjectured in [1] that there is at most one bounded channel flow for a viscoelastic fluid whose stress relaxation function G is positive, integrable, and strictly convex. In this paper we prove the uniqueness of bounded channel flows, assuming G to be non-negative, integrable, and convex, but different from a very specific piecewise linear function. Furthermore, whenever these hypotheses apply, the unbounded channel flows, if any, must grow in time faster than any polynomial. ...

Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system

Yanjiang Li, Zhongqing Yu, Yumei Huang (2024)

Czechoslovak Mathematical Journal

Similarity:

The self-consistent chemotaxis-fluid system n t + u · n = Δ n - · ( n c ) + · ( n φ ) , x Ω , t > 0 , c t + u · c = Δ c - n c , x Ω , t > 0 , u t + κ ( u · ) u + P = Δ u - n φ + n c , x Ω , t > 0 , · u = 0 , x Ω , t > 0 , is considered under no-flux boundary conditions for n , c and the Dirichlet boundary condition for u on a bounded smooth domain Ω N ( N = 2 , 3 ) , κ { 0 , 1 } . The existence of global bounded classical solutions is proved under a smallness assumption on c 0 L ( Ω ) . Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid...

Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle

Reinhard Farwig (2005)

Banach Center Publications

Similarity:

Consider the problem of time-periodic strong solutions of the Stokes system modelling viscous incompressible fluid flow past a rotating obstacle in the whole space ℝ³. Introducing a rotating coordinate system attached to the body yields a system of partial differential equations of second order involving an angular derivative not subordinate to the Laplacian. In a recent paper [2] the author proved L q -estimates of second order derivatives uniformly in the angular and translational velocities,...

Global existence of smooth solutions for the compressible viscous fluid flow with radiation in 3

Hyejong O, Hakho Hong, Jongsung Kim (2023)

Applications of Mathematics

Similarity:

This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in [ 0 , ) , provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.

Global existence of solutions for incompressible magnetohydrodynamic equations

Wisam Alame, W. M. Zajączkowski (2004)

Applicationes Mathematicae

Similarity:

Global-in-time existence of solutions for incompressible magnetohydrodynamic fluid equations in a bounded domain Ω ⊂ ℝ³ with the boundary slip conditions is proved. The proof is based on the potential method. The existence is proved in a class of functions such that the velocity and the magnetic field belong to W p 2 , 1 ( Ω × ( 0 , T ) ) and the pressure q satisfies q L p ( Ω × ( 0 , T ) ) for p ≥ 7/3.

The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in L r -framework

Tomáš Neustupa (2023)

Applications of Mathematics

Similarity:

We deal with the steady Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to domain Ω , which represents one spatial period, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves Γ - and Γ + (lower and upper parts of Ω ), the Dirichlet boundary conditions on Γ in (the inflow) and Γ 0 (boundary of the profile) and an artificial “do nothing”-type boundary...

An attraction result and an index theorem for continuous flows on n × [ 0 , )

Klaudiusz Wójcik (1997)

Annales Polonici Mathematici

Similarity:

We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on E = n + 1 for which E = n × 0 is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in EE such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on n × [ 0 , ) .

A short note on L q theory for Stokes problem with a pressure-dependent viscosity

Václav Mácha (2016)

Czechoslovak Mathematical Journal

Similarity:

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u , namely, it is represented by a stress tensor T ( D u , p ) : = ν ( p , | D | 2 ) D which satisfies r -growth condition with r ( 1 , 2 ] . In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for...