Displaying similar documents to “A graph associated to proper non-small ideals of a commutative ring”

The prime ideals intersection graph of a ring

M. J. Nikmehr, B. Soleymanzadeh (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a commutative ring with unity and U ( R ) be the set of unit elements of R . In this paper, we introduce and investigate some properties of a new kind of graph on the ring R , namely, the prime ideals intersection graph of R , denoted by G p ( R ) . The G p ( R ) is a graph with vertex set R * - U ( R ) and two distinct vertices a and b are adjacent if and only if there exists a prime ideal 𝔭 of R such that a , b 𝔭 . We obtain necessary and sufficient conditions on R such that G p ( R ) is disconnected. We find the diameter and...

On graph associated to co-ideals of commutative semirings

Yahya Talebi, Atefeh Darzi (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a commutative semiring with non-zero identity. In this paper, we introduce and study the graph Ω ( R ) whose vertices are all elements of R and two distinct vertices x and y are adjacent if and only if the product of the co-ideals generated by x and y is R . Also, we study the interplay between the graph-theoretic properties of this graph and some algebraic properties of semirings. Finally, we present some relationships between the zero-divisor graph Γ ( R ) and Ω ( R ) .

Squarefree monomial ideals with maximal depth

Ahad Rahimi (2020)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a Noetherian local ring and M a finitely generated R -module. We say M has maximal depth if there is an associated prime 𝔭 of M such that depth M = dim R / 𝔭 . In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.

When a line graph associated to annihilating-ideal graph of a lattice is planar or projective

Atossa Parsapour, Khadijeh Ahmad Javaheri (2018)

Czechoslovak Mathematical Journal

Similarity:

Let ( L , , ) be a finite lattice with a least element 0. 𝔸 G ( L ) is an annihilating-ideal graph of L in which the vertex set is the set of all nontrivial ideals of L , and two distinct vertices I and J are adjacent if and only if I J = 0 . We completely characterize all finite lattices L whose line graph associated to an annihilating-ideal graph, denoted by 𝔏 ( 𝔸 G ( L ) ) , is a planar or projective graph.

Some results on the annihilator graph of a commutative ring

Mojgan Afkhami, Kazem Khashyarmanesh, Zohreh Rajabi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring. The annihilator graph of R , denoted by AG ( R ) , is the undirected graph with all nonzero zero-divisors of R as vertex set, and two distinct vertices x and y are adjacent if and only if ann R ( x y ) ann R ( x ) ann R ( y ) , where for z R , ann R ( z ) = { r R : r z = 0 } . In this paper, we characterize all finite commutative rings R with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings R whose annihilator graphs have clique number 1 , 2 or 3 . Also, we investigate some properties...

Some classes of perfect strongly annihilating-ideal graphs associated with commutative rings

Mitra Jalali, Abolfazl Tehranian, Reza Nikandish, Hamid Rasouli (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a commutative ring with identity and A ( R ) be the set of ideals with nonzero annihilator. The strongly annihilating-ideal graph of R is defined as the graph SAG ( R ) with the vertex set A ( R ) * = A ( R ) { 0 } and two distinct vertices I and J are adjacent if and only if I Ann ( J ) ( 0 ) and J Ann ( I ) ( 0 ) . In this paper, the perfectness of SAG ( R ) for some classes of rings R is investigated.

On the intersection graph of a finite group

Hossein Shahsavari, Behrooz Khosravi (2017)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G , the intersection graph of G which is denoted by Γ ( G ) is an undirected graph such that its vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when H K 1 . In this paper we classify all finite groups whose intersection graphs are regular. Also, we find some results on the intersection graphs of simple groups and finally we study the structure of Aut ( Γ ( G ) ) .

Characterization by intersection graph of some families of finite nonsimple groups

Hossein Shahsavari, Behrooz Khosravi (2021)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G , Γ ( G ) , the intersection graph of G , is a simple graph whose vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when H K 1 . In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.

A co-ideal based identity-summand graph of a commutative semiring

S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let I be a strong co-ideal of a commutative semiring R with identity. Let Γ I ( R ) be a graph with the set of vertices S I ( R ) = { x R I : x + y I for some y R I } , where two distinct vertices x and y are adjacent if and only if x + y I . We look at the diameter and girth of this graph. Also we discuss when Γ I ( R ) is bipartite. Moreover, studies are done on the planarity, clique, and chromatic number of this graph. Examples illustrating the results are presented.

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of...

The extremal irregularity of connected graphs with given number of pendant vertices

Xiaoqian Liu, Xiaodan Chen, Junli Hu, Qiuyun Zhu (2022)

Czechoslovak Mathematical Journal

Similarity:

The irregularity of a graph G = ( V , E ) is defined as the sum of imbalances | d u - d v | over all edges u v E , where d u denotes the degree of the vertex u in G . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with n vertices and p pendant vertices ( 1 p n - 1 ), and characterize the corresponding extremal graphs.

On 𝓕-independence in graphs

Frank Göring, Jochen Harant, Dieter Rautenbach, Ingo Schiermeyer (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let be a set of graphs and for a graph G let α ( G ) and α * ( G ) denote the maximum order of an induced subgraph of G which does not contain a graph in as a subgraph and which does not contain a graph in as an induced subgraph, respectively. Lower bounds on α ( G ) and α * ( G ) are presented.

Classification of rings with toroidal Jacobson graph

Krishnan Selvakumar, Manoharan Subajini (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with nonzero identity and J ( R ) the Jacobson radical of R . The Jacobson graph of R , denoted by 𝔍 R , is defined as the graph with vertex set R J ( R ) such that two distinct vertices x and y are adjacent if and only if 1 - x y is not a unit of R . The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface S n . In this paper, we investigate the genus number of the compact Riemann surface in which 𝔍 R can be embedded and...