The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Spectral Characterizations of Graphs”

The spectral determinations of the connected multicone graphs K w m P 17 and K w m S

Ali Zeydi Abdian, S. Morteza Mirafzal (2018)

Czechoslovak Mathematical Journal

Similarity:

Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let K w denote a complete graph on w vertices, and let m be a positive integer number. In A. Z. Abdian (2016)...

A note on periodicity of the 2-distance operator

Bohdan Zelinka (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The paper solves one problem by E. Prisner concerning the 2-distance operator T₂. This is an operator on the class C f of all finite undirected graphs. If G is a graph from C f , then T₂(G) is the graph with the same vertex set as G in which two vertices are adjacent if and only if their distance in G is 2. E. Prisner asks whether the periodicity ≥ 3 is possible for T₂. In this paper an affirmative answer is given. A result concerning the periodicity 2 is added.

Unbalanced unicyclic and bicyclic graphs with extremal spectral radius

Francesco Belardo, Maurizio Brunetti, Adriana Ciampella (2021)

Czechoslovak Mathematical Journal

Similarity:

A signed graph Γ is a graph whose edges are labeled by signs. If Γ has n vertices, its spectral radius is the number ρ ( Γ ) : = max { | λ i ( Γ ) | : 1 i n } , where λ 1 ( Γ ) λ n ( Γ ) are the eigenvalues of the signed adjacency matrix A ( Γ ) . Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes 𝔘 n and 𝔅 n of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.

Unicyclic graphs with bicyclic inverses

Swarup Kumar Panda (2017)

Czechoslovak Mathematical Journal

Similarity:

A graph is nonsingular if its adjacency matrix A ( G ) is nonsingular. The inverse of a nonsingular graph G is a graph whose adjacency matrix is similar to A ( G ) - 1 via a particular type of similarity. Let denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in which possess unicyclic inverses. We present a characterization of unicyclic graphs in which possess bicyclic inverses.

4-cycle properties for characterizing rectagraphs and hypercubes

Khadra Bouanane, Abdelhafid Berrachedi (2017)

Czechoslovak Mathematical Journal

Similarity:

A ( 0 , 2 ) -graph is a connected graph, where each pair of vertices has either 0 or 2 common neighbours. These graphs constitute a subclass of ( 0 , λ ) -graphs introduced by Mulder in 1979. A rectagraph, well known in diagram geometry, is a triangle-free ( 0 , 2 ) -graph. ( 0 , 2 ) -graphs include hypercubes, folded cube graphs and some particular graphs such as icosahedral graph, Shrikhande graph, Klein graph, Gewirtz graph, etc. In this paper, we give some local properties of 4-cycles in ( 0 , λ ) -graphs and more specifically...

On the total k-domination number of graphs

Adel P. Kazemi (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ × k ( G ) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V, | N G [ v ] S | k . Also the total k-domination number γ × k , t ( G ) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V, | N G ( v ) S | k . The k-transversal number τₖ(H) of a hypergraph H is the minimum size of a subset S ⊆ V(H) such that |S ∩e | ≥ k for every edge e ∈ E(H). We know that for...

On 𝓕-independence in graphs

Frank Göring, Jochen Harant, Dieter Rautenbach, Ingo Schiermeyer (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let be a set of graphs and for a graph G let α ( G ) and α * ( G ) denote the maximum order of an induced subgraph of G which does not contain a graph in as a subgraph and which does not contain a graph in as an induced subgraph, respectively. Lower bounds on α ( G ) and α * ( G ) are presented.

On distance Laplacian energy in terms of graph invariants

Hilal A. Ganie, Rezwan Ul Shaban, Bilal A. Rather, Shariefuddin Pirzada (2023)

Czechoslovak Mathematical Journal

Similarity:

For a simple connected graph G of order n having distance Laplacian eigenvalues ρ 1 L ρ 2 L ρ n L , the distance Laplacian energy DLE ( G ) is defined as DLE ( G ) = i = 1 n | ρ i L - 2 W ( G ) / n | , where W ( G ) is the Wiener index of G . We obtain a relationship between the Laplacian energy and the distance Laplacian energy for graphs with diameter 2. We obtain lower bounds for the distance Laplacian energy DLE ( G ) in terms of the order n , the Wiener index W ( G ) , the independence number, the vertex connectivity number and other given parameters. We characterize the...

On characterization of uniquely 3-list colorable complete multipartite graphs

Yancai Zhao, Erfang Shan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K 2 , 2 , r r ∈ 4,5,6,7,8, K 2 , 3 , 4 , K 1 * 4 , 4 , K 1 * 4 , 5 , K 1 * 5 , 4 . Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K 2 , 2 , r r ∈ 4,5,6,7,8, the others have been proved not...

Remarks on D -integral complete multipartite graphs

Pavel Híc, Milan Pokorný (2016)

Czechoslovak Mathematical Journal

Similarity:

A graph is called distance integral (or D -integral) if all eigenvalues of its distance matrix are integers. In their study of D -integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on D -integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs K p 1 , p 2 , p 3 with p 1 < p 2 < p 3 , and K p 1 , p 2 , p 3 , p 4 with p 1 < p 2 < p 3 < p 4 , as well as the infinite classes of distance integral...

The extremal irregularity of connected graphs with given number of pendant vertices

Xiaoqian Liu, Xiaodan Chen, Junli Hu, Qiuyun Zhu (2022)

Czechoslovak Mathematical Journal

Similarity:

The irregularity of a graph G = ( V , E ) is defined as the sum of imbalances | d u - d v | over all edges u v E , where d u denotes the degree of the vertex u in G . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with n vertices and p pendant vertices ( 1 p n - 1 ), and characterize the corresponding extremal graphs.

Graphs with small diameter determined by their D -spectra

Ruifang Liu, Jie Xue (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a connected graph with vertex set V ( G ) = { v 1 , v 2 , ... , v n } . The distance matrix D ( G ) = ( d i j ) n × n is the matrix indexed by the vertices of G , where d i j denotes the distance between the vertices v i and v j . Suppose that λ 1 ( D ) λ 2 ( D ) λ n ( D ) are the distance spectrum of G . The graph G is said to be determined by its D -spectrum if with respect to the distance matrix D ( G ) , any graph having the same spectrum as G is isomorphic to G . We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs...

Paired domination in prisms of graphs

Christina M. Mynhardt, Mark Schurch (2011)

Discussiones Mathematicae Graph Theory

Similarity:

The paired domination number γ p r ( G ) of a graph G is the smallest cardinality of a dominating set S of G such that ⟨S⟩ has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V(G)| independent edges. We provide characterizations of the following three classes of graphs: γ p r ( π G ) = 2 γ p r ( G ) for all πG; γ p r ( K G ) = 2 γ p r ( G ) ; γ p r ( K G ) = γ p r ( G ) .