Displaying similar documents to “On almost complex structures from classical linear connections”

The general rigidity result for bundles of A -covelocities and A -jets

Jiří M. Tomáš (2017)

Czechoslovak Mathematical Journal

Similarity:

Let M be an m -dimensional manifold and A = 𝔻 k r / I = N A a Weil algebra of height r . We prove that any A -covelocity T x A f T x A * M , x M is determined by its values over arbitrary max { width A , m } regular and under the first jet projection linearly independent elements of T x A M . Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result T A * M T r * M without coordinate computations, which improves and generalizes the partial...

Stable tubes in extriangulated categories

Li Wang, Jiaqun Wei, Haicheng Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒳 be a semibrick in an extriangulated category. If 𝒳 is a τ -semibrick, then the Auslander-Reiten quiver Γ ( ( 𝒳 ) ) of the filtration subcategory ( 𝒳 ) generated by 𝒳 is 𝔸 . If 𝒳 = { X i } i = 1 t is a τ -cycle semibrick, then Γ ( ( 𝒳 ) ) is 𝔸 / τ 𝔸 t .

Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital C * -algebras

Kazunori Kodaka (2022)

Mathematica Bohemica

Similarity:

Let 𝒜 = { A t } t G and = { B t } t G be C * -algebraic bundles over a finite group G . Let C = t G A t and D = t G B t . Also, let A = A e and B = B e , where e is the unit element in G . We suppose that C and D are unital and A and B have the unit elements in C and D , respectively. In this paper, we show that if there is an equivalence 𝒜 - -bundle over G with some properties, then the unital inclusions of unital C * -algebras A C and B D induced by 𝒜 and are strongly Morita equivalent. Also, we suppose that 𝒜 and are saturated and that A ' C = 𝐂 1 . We show that...

On lifts of projectable-projectable classical linear connections to the cotangent bundle

Anna Bednarska (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We describe all 2 m 1 , m 2 , n 1 , n 2 -natural operators D : Q p r o j - p r o j τ Q T * transforming projectable-projectable classical torsion-free linear connections on fibred-fibred manifolds Y into classical linear connections D ( ) on cotangent bundles T * Y of Y . We show that this problem can be reduced to finding 2 m 1 , m 2 , n 1 , n 2 -natural operators D : Q p r o j - p r o j τ ( T * , p T * q T ) for p = 2 , q = 1 and p = 3 , q = 0 .

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n &gt; 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

Complex series and connected sets

B. Jasek

Similarity:

CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO Σ 1 , Σ 2 , Σ 3 , Σ 4 INESSENTIAL RESTRICTIONOF GENERALITY ...............................................................................................................................................................