Displaying similar documents to “Necessary and sufficient conditions for the L 1 -convergence of double Fourier series”

Regular statistical convergence of double sequences

Ferenc Móricz (2005)

Colloquium Mathematicae

Similarity:

The concepts of statistical convergence of single and double sequences of complex numbers were introduced in [1] and [7], respectively. In this paper, we introduce the concept indicated in the title. A double sequence x j k : ( j , k ) ² is said to be regularly statistically convergent if (i) the double sequence x j k is statistically convergent to some ξ ∈ ℂ, (ii) the single sequence x j k : k is statistically convergent to some ξ j for each fixed j ∈ ℕ ∖ ₁, (iii) the single sequence x j k : j is statistically convergent...

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

Similarity:

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative...

On L p integrability and convergence of trigonometric series

Dansheng Yu, Ping Zhou, Songping Zhou (2007)

Studia Mathematica

Similarity:

We first give a necessary and sufficient condition for x - γ ϕ ( x ) L p , 1 < p < ∞, 1/p - 1 < γ < 1/p, where ϕ(x) is the sum of either k = 1 a k c o s k x or k = 1 b k s i n k x , under the condition that λₙ (where λₙ is aₙ or bₙ respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients λₙ and the sum function ϕ(x) under the condition that λₙ ∈ MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of ϕ(x)...

Convergence of greedy approximation II. The trigonometric system

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in...

On the uniform convergence of double sine series

Péter Kórus, Ferenc Móricz (2009)

Studia Mathematica

Similarity:

Let a single sine series (*) k = 1 a k s i n k x be given with nonnegative coefficients a k . If a k is a “mean value bounded variation sequence” (briefly, MVBVS), then a necessary and sufficient condition for the uniform convergence of series (*) is that k a k 0 as k → ∞. The class MVBVS includes all sequences monotonically decreasing to zero. These results are due to S. P. Zhou, P. Zhou and D. S. Yu. In this paper we extend them from single to double sine series (**) k = 1 l = 1 c k l s i n k x s i n l y , even with complex coefficients c k l . We also...

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

On the convergence theory of double K -weak splittings of type II

Vaibhav Shekhar, Nachiketa Mishra, Debasisha Mishra (2022)

Applications of Mathematics

Similarity:

Recently, Wang (2017) has introduced the K -nonnegative double splitting using the notion of matrices that leave a cone K n invariant and studied its convergence theory by generalizing the corresponding results for the nonnegative double splitting by Song and Song (2011). However, the convergence theory for K -weak regular and K -nonnegative double splittings of type II is not yet studied. In this article, we first introduce this class of splittings and then discuss the convergence theory...

Convergence of greedy approximation I. General systems

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as T ε ( x ) : = j D ε ( x ) e * j ( x ) e j , where D ε ( x ) : = j : | e * j ( x ) | ε . We study a generalized version of T ε that we call the weak thresholding approximation. We modify the T ε ( x ) in the following way. For ε > 0, t ∈ (0,1) we set D t , ε ( x ) : = j : t ε | e * j ( x ) | < ε and consider...

Some generalizations of Olivier's theorem

Alain Faisant, Georges Grekos, Ladislav Mišík (2016)

Mathematica Bohemica

Similarity:

Let n = 1 a n be a convergent series of positive real numbers. L. Olivier proved that if the sequence ( a n ) is non-increasing, then lim n n a n = 0 . In the present paper: (a) We formulate and prove a necessary and sufficient condition for having lim n n a n = 0 ; Olivier’s theorem is a consequence of our Theorem . (b) We prove properties analogous to Olivier’s property when the usual convergence is replaced by the -convergence, that is a convergence according to an ideal of subsets of . Again, Olivier’s theorem is a consequence...

The gradient lemma

Urban Cegrell (2007)

Annales Polonici Mathematici

Similarity:

We show that if a decreasing sequence of subharmonic functions converges to a function in W l o c 1 , 2 then the convergence is in W l o c 1 , 2 .

Nilakantha's accelerated series for π

David Brink (2015)

Acta Arithmetica

Similarity:

We show how the idea behind a formula for π discovered by the Indian mathematician and astronomer Nilakantha (1445-1545) can be developed into a general series acceleration technique which, when applied to the Gregory-Leibniz series, gives the formula π = n = 0 ( ( 5 n + 3 ) n ! ( 2 n ) ! ) / ( 2 n - 1 ( 3 n + 2 ) ! ) with convergence as 13 . 5 - n , in much the same way as the Euler transformation gives π = n = 0 ( 2 n + 1 n ! n ! ) / ( 2 n + 1 ) ! with convergence as 2 - n . Similar transformations lead to other accelerated series for π, including three “BBP-like” formulas, all of which are collected in...

Pointwise convergence of nonconventional averages

I. Assani (2005)

Colloquium Mathematicae

Similarity:

We answer a question of H. Furstenberg on the pointwise convergence of the averages 1 / N n = 1 N U ( f · R ( g ) ) , where U and R are positive operators. We also study the pointwise convergence of the averages 1 / N n = 1 N f ( S x ) g ( R x ) when T and S are measure preserving transformations.

A note on average behaviour of the Fourier coefficients of j th symmetric power L -function over certain sparse sequence of positive integers

Youjun Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let j 2 be a given integer. Let H k * be the set of all normalized primitive holomorphic cusp forms of even integral weight k 2 for the full modulo group SL ( 2 , ) . For f H k * , denote by λ sym j f ( n ) the n th normalized Fourier coefficient of j th symmetric power L -function ( L ( s , sym j f ) ) attached to f . We are interested in the average behaviour of the sum n = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( n ) , where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

Weak convergence of mutually independent X B and X A under weak convergence of X X B - X A

W. Szczotka (2006)

Applicationes Mathematicae

Similarity:

For each n ≥ 1, let v n , k , k 1 and u n , k , k 1 be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means v̅ₙ and u̅̅ₙ, respectively. Let X B ( t ) = ( 1 / c ) j = 1 [ n t ] ( v n , j - v ̅ ) , X A ( t ) = ( 1 / c ) j = 1 [ n t ] ( u n , j - u ̅ ̅ ) , t ≥ 0, and X = X B - X A . The main result gives conditions under which the weak convergence X X , where X is a Lévy process, implies X B X B and X A X A , where X B and X A are mutually independent Lévy processes and X = X B - X A .

Convergence of Taylor series in Fock spaces

Haiying Li (2014)

Studia Mathematica

Similarity:

It is well known that the Taylor series of every function in the Fock space F α p converges in norm when 1 < p < ∞. It is also known that this is no longer true when p = 1. In this note we consider the case 0 < p < 1 and show that the Taylor series of functions in F α p do not necessarily converge “in norm”.

A-Statistical Convergence of Subsequence of Double Sequences

Harry I. Miller (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

The concept of statistical convergence of a sequence was first introduced by H. Fast [7] in 1951. Recently, in the literature, the concept of statistical convergence of double sequences has been studied. The main result in this paper is a theorem that gives meaning to the statement: s = s i j converges statistically A to L if and only if "most" of the "subsequences" of s converge to L in the ordinary sense. The results presented here are analogue of theorems in [12], [13] and [6] and are concerned...