Displaying similar documents to “On Szymański theorem on hereditary normality of β ω

Non-normality points and nice spaces

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

J. Terasawa in " β X - { p } are non-normal for non-discrete spaces X " (2007) and the author in “On non-normality points and metrizable crowded spaces” (2007), independently showed for any metrizable crowded space X that each point p of its Čech–Stone remainder X * is a non-normality point of β X . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.

A note on spaces with countable extent

Yan-Kui Song (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let P be a topological property. A space X is said to be star P if whenever 𝒰 is an open cover of X , there exists a subspace A X with property P such that X = S t ( A , 𝒰 ) . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.

On hereditary normality of ω * , Kunen points and character ω 1

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that ω * { p } is not normal, if p is a limit point of some countable subset of ω * , consisting of points of character ω 1 . Moreover, such a point p is a Kunen point and a super Kunen point.

A note on star Lindelöf, first countable and normal spaces

Wei-Feng Xuan (2017)

Mathematica Bohemica

Similarity:

A topological space X is said to be star Lindelöf if for any open cover 𝒰 of X there is a Lindelöf subspace A X such that St ( A , 𝒰 ) = X . The “extent” e ( X ) of X is the supremum of the cardinalities of closed discrete subsets of X . We prove that under V = L every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under MA + ¬ CH , which shows that a star Lindelöf, first countable and normal space may not have countable extent.

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact...

Characterizations of z -Lindelöf spaces

Ahmad Al-Omari, Takashi Noiri (2017)

Archivum Mathematicum

Similarity:

A topological space ( X , τ ) is said to be z -Lindelöf  [1] if every cover of X by cozero sets of ( X , τ ) admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of z -Lindelöf spaces.

Spaces with property ( D C ( ω 1 ) )

Wei-Feng Xuan, Wei-Xue Shi (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that if X is a first countable space with property ( D C ( ω 1 ) ) and with a G δ -diagonal then the cardinality of X is at most 𝔠 . We also show that if X is a first countable, DCCC, normal space then the extent of X is at most 𝔠 .

Locally functionally countable subalgebra of ( L )

M. Elyasi, A. A. Estaji, M. Robat Sarpoushi (2020)

Archivum Mathematicum

Similarity:

Let L c ( X ) = { f C ( X ) : C f ¯ = X } , where C f is the union of all open subsets U X such that | f ( U ) | 0 . In this paper, we present a pointfree topology version of L c ( X ) , named c ( L ) . We observe that c ( L ) enjoys most of the important properties shared by ( L ) and c ( L ) , where c ( L ) is the pointfree version of all continuous functions of C ( X ) with countable image. The interrelation between ( L ) , c ( L ) , and c ( L ) is examined. We show that L c ( X ) c ( 𝔒 ( X ) ) for any space X . Frames L for which c ( L ) = ( L ) are characterized.

On non-normality points, Tychonoff products and Suslin number

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let a space X be Tychonoff product α < τ X α of τ -many Tychonoff nonsingle point spaces X α . Let Suslin number of X be strictly less than the cofinality of τ . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification β X . In particular, this is true if X is either R τ or ω τ and a cardinal τ is infinite and not countably cofinal.

Functionally countable subalgebras and some properties of the Banaschewski compactification

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a zero-dimensional space and C c ( X ) be the set of all continuous real valued functions on X with countable image. In this article we denote by C c K ( X ) (resp., C c ψ ( X ) ) the set of all functions in C c ( X ) with compact (resp., pseudocompact) support. First, we observe that C c K ( X ) = O c β 0 X X (resp., C c ψ ( X ) = M c β 0 X υ 0 X ), where β 0 X is the Banaschewski compactification of X and υ 0 X is the -compactification of X . This implies that for an -compact space X , the intersection of all free maximal ideals in C c ( X ) is equal to C c K ( X ) , i.e., M c β 0 X X = C c K ( X ) . By applying...

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

On butterfly-points in β X , Tychonoff products and weak Lindelöf numbers

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be the Tychonoff product α < τ X α of τ -many Tychonoff non-single point spaces X α . Let p X * be a point in the closure of some G X whose weak Lindelöf number is strictly less than the cofinality of τ . Then we show that β X { p } is not normal. Under some additional assumptions, p is a butterfly-point in β X . In particular, this is true if either X = ω τ or X = R τ and τ is infinite and not countably cofinal.

More reflections on compactness

Lúcia R. Junqueira, Franklin D. Tall (2003)

Fundamenta Mathematicae

Similarity:

We consider the question of when X M = X , where X M is the elementary submodel topology on X ∩ M, especially in the case when X M is compact.

An observation on spaces with a zeroset diagonal

Wei-Feng Xuan (2020)

Mathematica Bohemica

Similarity:

We say that a space X has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. A space X has a zeroset diagonal if there is a continuous mapping f : X 2 [ 0 , 1 ] with Δ X = f - 1 ( 0 ) , where Δ X = { ( x , x ) : x X } . In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most 𝔠 .

Continuous images of Lindelöf p -groups, σ -compact groups, and related results

Aleksander V. Arhangel&#039;skii (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown that there exists a σ -compact topological group which cannot be represented as a continuous image of a Lindelöf p -group, see Example 2.8. This result is based on an inequality for the cardinality of continuous images of Lindelöf p -groups (Theorem 2.1). A closely related result is Corollary 4.4: if a space Y is a continuous image of a Lindelöf p -group, then there exists a covering γ of Y by dyadic compacta such that | γ | 2 ω . We also show that if a homogeneous compact space Y is...