Displaying similar documents to “Green-Liouville approximation and correct solvability in L p ( ) of the general Sturm-Liouville equation”

Correct solvability of a general differential equation of the first order in the space L p ( )

Nina A. Chernyavskaya, Leonid A. Shuster (2015)

Archivum Mathematicum

Similarity:

We consider the equation - r ( x ) y ' ( x ) + q ( x ) y ( x ) = f ( x ) , x where f L p ( ) , p [ 1 , ] ( L ( ) : = C ( ) ) and 0 < r C ( ) , 0 q L 1 ( ) . We obtain minimal requirements to the functions r and q , in addition to (), under which equation () is correctly solvable in L p ( ) , p [ 1 , ] .

Admissible spaces for a first order differential equation with delayed argument

Nina A. Chernyavskaya, Lela S. Dorel, Leonid A. Shuster (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider the equation - y ' ( x ) + q ( x ) y ( x - ϕ ( x ) ) = f ( x ) , x , where ϕ and q ( q 1 ) are positive continuous functions for all x and f C ( ) . By a solution of the equation we mean any function y , continuously differentiable everywhere in , which satisfies the equation for all x . We show that under certain additional conditions on the functions ϕ and q , the above equation has a unique solution y , satisfying the inequality y ' C ( ) + q y C ( ) c f C ( ) , where the constant c ( 0 , ) does not depend on the choice of f .

An approximation property of quadratic irrationals

Takao Komatsu (2002)

Bulletin de la Société Mathématique de France

Similarity:

Let α &gt; 1 be irrational. Several authors studied the numbers m ( α ) = inf { | y | : y Λ m , y 0 } , where m is a positive integer and Λ m denotes the set of all real numbers of the form y = ϵ 0 α n + ϵ 1 α n - 1 + + ϵ n - 1 α + ϵ n with restricted integer coefficients | ϵ i | m . The value of 1 ( α ) was determined for many particular Pisot numbers and m ( α ) for the golden number. In this paper the value of  m ( α ) is determined for irrational numbers  α , satisfying α 2 = a α ± 1 with a positive integer a .

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Similarity:

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k Φ i 1 ( z 0 ) , [ Φ i 1 , Φ i 2 ] ( z 0 ) , [ [ Φ i 1 , Φ i 2 ] , Φ i 3 ] ( z 0 ) , ... ( h , i h k + 1 ) belong to T z 0 𝕄 . Such a property has been proved in [9] for k = 1 and its proof in the...

The Rothberger property on C p ( Ψ ( 𝒜 ) , 2 )

Daniel Bernal-Santos (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is said to have the Rothberger property (or simply X is Rothberger) if for every sequence 𝒰 n : n ω of open covers of X , there exists U n 𝒰 n for each n ω such that X = n ω U n . For any n ω , necessary and sufficient conditions are obtained for C p ( Ψ ( 𝒜 ) , 2 ) n to have the Rothberger property when 𝒜 is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family 𝒜 for which the space C p ( Ψ ( 𝒜 ) , 2 ) n is Rothberger for all n ω .

A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations

Manabu Naito (2024)

Mathematica Bohemica

Similarity:

The half-linear differential equation ( | u ' | α sgn u ' ) ' = α ( λ α + 1 + b ( t ) ) | u | α sgn u , t t 0 , is considered, where α and λ are positive constants and b ( t ) is a real-valued continuous function on [ t 0 , ) . It is proved that, under a mild integral smallness condition of b ( t ) which is weaker than the absolutely integrable condition of b ( t ) , the above equation has a nonoscillatory solution u 0 ( t ) such that u 0 ( t ) e - λ t and u 0 ' ( t ) - λ e - λ t ( t ), and a nonoscillatory solution u 1 ( t ) such that u 1 ( t ) e λ t and u 1 ' ( t ) λ e λ t ( t ).

On a system of equations with primes

Paolo Leonetti, Salvatore Tringali (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions. We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any...

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

Differences of two semiconvex functions on the real line

Václav Kryštof, Luděk Zajíček (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is proved that real functions on which can be represented as the difference of two semiconvex functions with a general modulus (or of two lower C 1 -functions, or of two strongly paraconvex functions) coincide with semismooth functions on (i.e. those locally Lipschitz functions on for which f + ' ( x ) = lim t x + f + ' ( t ) and f - ' ( x ) = lim t x - f - ' ( t ) for each x ). Further, for each modulus ω , we characterize the class D S C ω of functions on which can be written as f = g - h , where g and h are semiconvex with modulus C ω (for some C > 0 ) using a new...