Displaying similar documents to “Aposyndesis in

On a certain class of arithmetic functions

Antonio M. Oller-Marcén (2017)

Mathematica Bohemica

Similarity:

A homothetic arithmetic function of ratio K is a function f : R such that f ( K n ) = f ( n ) for every n . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of f ( ) in terms of the period and the ratio of f .

Numerical characterization of nef arithmetic divisors on arithmetic surfaces

Atsushi Moriwaki (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

In this paper, we give a numerical characterization of nef arithmetic -Cartier divisors of C 0 -type on an arithmetic surface. Namely an arithmetic -Cartier divisor D ¯ of C 0 -type is nef if and only if D ¯ is pseudo-effective and deg ^ ( D ¯ 2 ) = vol ^ ( D ¯ ) .

On generalized square-full numbers in an arithmetic progression

Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let a and b . Denote by R a , b the set of all integers n > 1 whose canonical prime representation n = p 1 α 1 p 2 α 2 p r α r has all exponents α i ( 1 i r ) being a multiple of a or belonging to the arithmetic progression a t + b , t 0 : = { 0 } . All integers in R a , b are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...

Totally Brown subsets of the Golomb space and the Kirch space

José del Carmen Alberto-Domínguez, Gerardo Acosta, Gerardo Delgadillo-Piñón (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider the Golomb topology τ G on the set of natural numbers, as well as the Kirch topology τ K on . Then we examine subsets of these spaces which are totally Brown. Among other results, we characterize the arithmetic progressions which are either totally Brown or totally separated in ( , τ G ) . We also show that ( , τ G ) and ( , τ K ) are aposyndetic....

A structure theorem for sets of small popular doubling

Przemysław Mazur (2015)

Acta Arithmetica

Similarity:

We prove that every set A ⊂ ℤ satisfying x m i n ( 1 A * 1 A ( x ) , t ) ( 2 + δ ) t | A | for t and δ in suitable ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset A ⊂ ℕ satisfies |ℕ∖(A+A)| ≥ k; specifically, we show that ( | ( A + A ) | k ) = Θ ( 2 - k / 2 ) .

On arithmetic progressions on Edwards curves

Enrique González-Jiménez (2015)

Acta Arithmetica

Similarity:

Let m > 0 and a,q ∈ ℚ. Denote by m ( a , q ) the set of rational numbers d such that a, a + q, ..., a + (m-1)q form an arithmetic progression in the Edwards curve E d : x ² + y ² = 1 + d x ² y ² . We study the set m ( a , q ) and we parametrize it by the rational points of an algebraic curve.

On the least almost-prime in arithmetic progressions

Liuying Wu (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 2 denote a positive integer with at most 2 prime factors, counted according to multiplicity. For integers a , q such that ( a , q ) = 1 , let 𝒫 2 ( q , a ) denote the least 𝒫 2 in the arithmetic progression { n q + a } n = 1 . It is proved that for sufficiently large q , we have 𝒫 2 ( q , a ) q 1 . 825 . This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained 𝒫 2 ( q , a ) q 1 . 8345 .

The Golomb space is topologically rigid

Taras O. Banakh, Dario Spirito, Sławomir Turek (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.

The common division topology on

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider a topology τ S on the set of natural numbers. We then present properties of the topological space ( , τ S ) , some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014,...

Generalized weighted quasi-arithmetic means and the Kolmogorov-Nagumo theorem

Janusz Matkowski (2013)

Colloquium Mathematicae

Similarity:

A generalization of the weighted quasi-arithmetic mean generated by continuous and increasing (decreasing) functions f , . . . , f k : I , k ≥ 2, denoted by A [ f , . . . , f k ] , is considered. Some properties of A [ f , . . . , f k ] , including “associativity” assumed in the Kolmogorov-Nagumo theorem, are shown. Convex and affine functions involving this type of means are considered. Invariance of a quasi-arithmetic mean with respect to a special mean-type mapping built of generalized means is applied in solving a functional equation. For...

An inconsistency equation involving means

Roman Ger, Tomasz Kochanek (2009)

Colloquium Mathematicae

Similarity:

We show that any quasi-arithmetic mean A φ and any non-quasi-arithmetic mean M (reasonably regular) are inconsistent in the sense that the only solutions f of both equations f ( M ( x , y ) ) = A φ ( f ( x ) , f ( y ) ) and f ( A φ ( x , y ) ) = M ( f ( x ) , f ( y ) ) are the constant ones.

A problem of Rankin on sets without geometric progressions

Melvyn B. Nathanson, Kevin O'Bryant (2015)

Acta Arithmetica

Similarity:

A geometric progression of length k and integer ratio is a set of numbers of the form a , a r , . . . , a r k - 1 for some positive real number a and integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct a strictly decreasing sequence ( a i ) i = 1 of positive real numbers with a₁ = 1 such that the set G ( k ) = i = 1 ( a 2 i , a 2 i - 1 ] contains no geometric progression of length k and integer ratio. Moreover, G ( k ) is a maximal subset of (0,1] that contains no geometric progression of length k and integer ratio. It is also proved that...

Precompactness in the uniform ergodic theory

Yu. Lyubich, J. Zemánek (1994)

Studia Mathematica

Similarity:

We characterize the Banach space operators T whose arithmetic means n - 1 ( I + T + . . . + T n - 1 ) n 1 form a precompact set in the operator norm topology. This occurs if and only if the sequence n - 1 T n n 1 is precompact and the point 1 is at most a simple pole of the resolvent of T. Equivalent geometric conditions are also obtained.

General position properties in fiberwise geometric topology

Taras Banakh, Vesko Valov

Similarity:

General position properties play a crucial role in geometric and infinite-dimensional topologies. Often such properties provide convenient tools for establishing various universality results. One of well-known general position properties is DDⁿ, the property of disjoint n-cells. Each Polish L C n - 1 -space X possessing DDⁿ contains a topological copy of each n-dimensional compact metric space. This fact implies, in particular, the classical Lefschetz-Menger-Nöbeling-Pontryagin-Tolstova embedding...