Displaying similar documents to “On the best ranges for A p + and R H r +

Lipschitz continuity in Muckenhoupt 𝓐₁ weighted function spaces

Dorothee D. Haroske (2011)

Banach Center Publications

Similarity:

We study continuity envelopes of function spaces B p , q s ( , w ) and F p , q s ( , w ) where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.

The maximal theorem for weighted grand Lebesgue spaces

Alberto Fiorenza, Babita Gupta, Pankaj Jain (2008)

Studia Mathematica

Similarity:

We study the Hardy inequality and derive the maximal theorem of Hardy and Littlewood in the context of grand Lebesgue spaces, considered when the underlying measure space is the interval (0,1) ⊂ ℝ, and the maximal function is localized in (0,1). Moreover, we prove that the inequality | | M f | | p ) , w c | | f | | p ) , w holds with some c independent of f iff w belongs to the well known Muckenhoupt class A p , and therefore iff | | M f | | p , w c | | f | | p , w for some c independent of f. Some results of similar type are discussed for the case of small...

The linear bound in A₂ for Calderón-Zygmund operators: a survey

Michael Lacey (2011)

Banach Center Publications

Similarity:

For an L²-bounded Calderón-Zygmund Operator T acting on L ² ( d ) , and a weight w ∈ A₂, the norm of T on L²(w) is dominated by C T | | w | | A . The recent theorem completes a line of investigation initiated by Hunt-Muckenhoupt-Wheeden in 1973 (MR0312139), has been established in different levels of generality by a number of authors over the last few years. It has a subtle proof, whose full implications will unfold over the next few years. This sharp estimate requires that the A₂ character of the weight can...

Weighted norm inequalities for maximal singular integrals with nondoubling measures

Guoen Hu, Dachun Yang (2008)

Studia Mathematica

Similarity:

Let μ be a nonnegative Radon measure on d which satisfies μ(B(x,r)) ≤ Crⁿ for any x d and r > 0 and some positive constants C and n ∈ (0,d]. In this paper, some weighted norm inequalities with A p ϱ ( μ ) weights of Muckenhoupt type are obtained for maximal singular integral operators with such a measure μ, via certain weighted estimates with A ϱ ( μ ) weights of Muckenhoupt type involving the John-Strömberg maximal operator and the John-Strömberg sharp maximal operator, where ϱ,p ∈ [1,∞).

On weighted Hardy spaces on the unit disk

Evgeny A. Poletsky, Khim R. Shrestha (2015)

Banach Center Publications

Similarity:

In this paper we completely characterize those weighted Hardy spaces that are Poletsky-Stessin Hardy spaces H u p . We also provide a reduction of H problems to H u p problems and demonstrate how such a reduction can be used to make shortcuts in the proofs of the interpolation theorem and corona problem.

Boundedness of Littlewood-Paley operators relative to non-isotropic dilations

Shuichi Sato (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on n . We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted L p spaces, 1 < p < , with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).

Maximal function and Carleson measures in the theory of Békollé-Bonami weights

Carnot D. Kenfack, Benoît F. Sehba (2016)

Colloquium Mathematicae

Similarity:

Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that | M ω f ( z ) | q d μ ( z ) C ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p and μ ( z : M f ( z ) > λ ) C / ( λ q ) ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p , where M ω is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.

One-sided discrete square function

A. de la Torre, J. L. Torrea (2003)

Studia Mathematica

Similarity:

Let f be a measurable function defined on ℝ. For each n ∈ ℤ we consider the average A f ( x ) = 2 - n x x + 2 f . The square function is defined as S f ( x ) = ( n = - | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 . The local version of this operator, namely the operator S f ( x ) = ( n = - 0 | A f ( x ) - A n - 1 f ( x ) | ² ) 1 / 2 , is of interest in ergodic theory and it has been extensively studied. In particular it has been proved [3] that it is of weak type (1,1), maps L p into itself (p > 1) and L into BMO. We prove that the operator S not only maps L into BMO but it also maps BMO into BMO. We also prove that the L p boundedness...

The minimal operator and the geometric maximal operator in ℝⁿ

David Cruz-Uribe, SFO (2001)

Studia Mathematica

Similarity:

We prove two-weight norm inequalities in ℝⁿ for the minimal operator f ( x ) = i n f Q x 1 / | Q | Q | f | d y , extending to higher dimensions results obtained by Cruz-Uribe, Neugebauer and Olesen [8] on the real line. As an application we extend to ℝⁿ weighted norm inequalities for the geometric maximal operator M f ( x ) = s u p Q x e x p ( 1 / | Q | Q l o g | f | d x ) , proved by Yin and Muckenhoupt [27]. We also give norm inequalities for the centered minimal operator, study powers of doubling weights and give sufficient conditions for the geometric maximal operator to be equal...

Solutions to the equation div u = f in weighted Sobolev spaces

Katrin Schumacher (2008)

Banach Center Publications

Similarity:

We consider the problem div u = f in a bounded Lipschitz domain Ω, where f with Ω f = 0 is given. It is shown that the solution u, constructed as in Bogovski’s approach in [1], fulfills estimates in the weighted Sobolev spaces W w k , q ( Ω ) , where the weight function w is in the class of Muckenhoupt weights A q .

The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces

Suying Liu, Minghua Yang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let L be a non-negative self-adjoint operator acting on L 2 ( n ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A r weight on n × n , 1 < r < . In this article we obtain a weighted atomic decomposition for the weighted Hardy space H L , w p ( n × n ) , 0 < p 1 associated to L . Based on the atomic decomposition, we show the dual relationship between H L , w 1 ( n × n ) and BMO L , w ( n × n ) .

Composition in ultradifferentiable classes

Armin Rainer, Gerhard Schindl (2014)

Studia Mathematica

Similarity:

We characterize stability under composition of ultradifferentiable classes defined by weight sequences M, by weight functions ω, and, more generally, by weight matrices , and investigate continuity of composition (g,f) ↦ f ∘ g. In addition, we represent the Beurling space ( ω ) and the Roumieu space ω as intersection and union of spaces ( M ) and M for associated weight sequences, respectively.

The John-Nirenberg inequality for functions of bounded mean oscillation with bounded negative part

Min Hu, Dinghuai Wang (2022)

Czechoslovak Mathematical Journal

Similarity:

A version of the John-Nirenberg inequality suitable for the functions b BMO with b - L is established. Then, equivalent definitions of this space via the norm of weighted Lebesgue space are given. As an application, some characterizations of this function space are given by the weighted boundedness of the commutator with the Hardy-Littlewood maximal operator.

Restricted weak type inequalities for the one-sided Hardy-Littlewood maximal operator in higher dimensions

Fabio Berra (2022)

Czechoslovak Mathematical Journal

Similarity:

We give a quantitative characterization of the pairs of weights ( w , v ) for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak ( p , p ) type inequality for 1 p < . More precisely, given any measurable set E 0 , the estimate w ( { x n : M + , d ( 𝒳 E 0 ) ( x ) > t } ) C [ ( w , v ) ] A p + , d ( ) p t p v ( E 0 ) holds if and only if the pair ( w , v ) belongs to A p + , d ( ) , that is, | E | | Q | [ ( w , v ) ] A p + , d ( ) v ( E ) w ( Q ) 1 / p for every dyadic cube Q and every measurable set E Q + . The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the...

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

Similarity:

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

Weighted boundedness of Toeplitz type operators related to singular integral operators with non-smooth kernel

Xiaosha Zhou, Lanzhe Liu (2013)

Colloquium Mathematicae

Similarity:

Some weighted sharp maximal function inequalities for the Toeplitz type operator T b = k = 1 m T k , 1 M b T k , 2 are established, where T k , 1 are a fixed singular integral operator with non-smooth kernel or ±I (the identity operator), T k , 2 are linear operators defined on the space of locally integrable functions, k = 1,..., m, and M b ( f ) = b f . The weighted boundedness of T b on Morrey spaces is obtained by using sharp maximal function inequalities.

Embeddings between weighted Copson and Cesàro function spaces

Amiran Gogatishvili, Rza Mustafayev, Tuğçe Ünver (2017)

Czechoslovak Mathematical Journal

Similarity:

In this paper, characterizations of the embeddings between weighted Copson function spaces Cop p 1 , q 1 ( u 1 , v 1 ) and weighted Cesàro function spaces Ces p 2 , q 2 ( u 2 , v 2 ) are given. In particular, two-sided estimates of the optimal constant c in the inequality d ( 0 0 t f ( τ ) p 2 v 2 ( τ ) d τ q 2 / p 2 u 2 ( t ) d t ) 1 / q 2 c 0 t f ( τ ) p 1 v 1 ( τ ) d τ q 1 / p 1 u 1 ( t ) d t 1 / q 1 , d where p 1 , p 2 , q 1 , q 2 ( 0 , ) , p 2 q 2 and u 1 , u 2 , v 1 , v 2 are weights on ( 0 , ) , are obtained. The most innovative part consists of the fact that possibly different parameters p 1 and p 2 and possibly different inner weights v 1 and v 2 are allowed. The proof is based on the combination of duality techniques...

Radial maximal function characterizations for Hardy spaces on RD-spaces

Loukas Grafakos, Liguang Liu, Dachun Yang (2009)

Bulletin de la Société Mathématique de France

Similarity:

An RD-space 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type 𝒳 having “dimension” n , there exists a p 0 ( n / ( n + 1 ) , 1 ) such that for certain classes of distributions, the L p ( 𝒳 ) quasi-norms of their radial maximal functions and grand maximal functions are equivalent when p ( p 0 , ] . This result yields a radial maximal function characterization for Hardy spaces on 𝒳 . ...

The continuity of pseudo-differential operators on weighted local Hardy spaces

Ming-Yi Lee, Chin-Cheng Lin, Ying-Chieh Lin (2010)

Studia Mathematica

Similarity:

We first show that a linear operator which is bounded on L ² w with w ∈ A₁ can be extended to a bounded operator on the weighted local Hardy space h ¹ w if and only if this operator is uniformly bounded on all h ¹ w -atoms. As an application, we show that every pseudo-differential operator of order zero has a bounded extension to h ¹ w .

The weak type inequality for the Walsh system

Ushangi Goginava (2008)

Studia Mathematica

Similarity:

The main aim of this paper is to prove that the maximal operator σ is bounded from the Hardy space H 1 / 2 to weak- L 1 / 2 and is not bounded from H 1 / 2 to L 1 / 2 .