Displaying similar documents to “Riemannian regular σ -manifolds”

On G -sets and isospectrality

Ori Parzanchevski (2013)

Annales de l’institut Fourier

Similarity:

We study finite G -sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If M is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then M has isospectral non-isometric covers.

How to define "convex functions" on differentiable manifolds

Stefan Rolewicz (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In the paper a class of families (M) of functions defined on differentiable manifolds M with the following properties: 1 . if M is a linear manifold, then (M) contains convex functions, 2 . (·) is invariant under diffeomorphisms, 3 . each f ∈ (M) is differentiable on a dense G δ -set, is investigated.

On 2 p -dimensional Riemannian manifolds with positive scalar curvature

Domenico Perrone (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In questo lavoro si danno alcuni risultati sugli spettri degli operatori di Laplace per varietà Riemanniane compatte con curvatura scalare positiva e di dimensione 2 p . Ad essi si aggiunge una osservazione riguardante la congettura di Yamabe.

Collapse of warped submersions

Szymon M. Walczak (2006)

Annales Polonici Mathematici

Similarity:

We generalize the concept of warped manifold to Riemannian submersions π: M → B between two compact Riemannian manifolds ( M , g M ) and ( B , g B ) in the following way. If f: B → (0,∞) is a smooth function on B which is extended to a function f̂ = f ∘ π constant along the fibres of π then we define a new metric g f on M by g f | × g M | × , g f | × T M ̂ f ̂ ² g M | × T M ̂ , where and denote the bundles of horizontal and vertical vectors. The manifold ( M , g f ) obtained that way is called a warped submersion. The function f is called a warping function. We show...

On the principle of real moduli flexibility: perfect parametrizations

Edoardo Ballico, Riccardo Ghiloni (2014)

Annales Polonici Mathematici

Similarity:

Let V be a real algebraic manifold of positive dimension. The aim of this paper is to show that, for every integer b (arbitrarily large), there exists a trivial Nash family = V y y R b of real algebraic manifolds such that V₀ = V, is an algebraic family of real algebraic manifolds over y R b 0 (possibly singular over y = 0) and is perfectly parametrized by R b in the sense that V y is birationally nonisomorphic to V z for every y , z R b with y ≠ z. A similar result continues to hold if V is a singular real algebraic...

Exotic Deformations of Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2013)

Annales de l’institut Fourier

Similarity:

We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) 2 n -dimensional symplectic manifolds ( M , κ ) endowed with a κ -tamed almost complex structure J and with a nowhere vanishing and normalized section ϵ of the bundle Λ J n , 0 ( M ) satisfying the condition ¯ J ϵ = 0 . We study the moduli space 𝔐 of QIS deformations of a given Calabi-Yau manifold, computing its tangent space...

Admissibly integral manifolds for semilinear evolution equations

Nguyen Thieu Huy, Vu Thi Ngoc Ha (2014)

Annales Polonici Mathematici

Similarity:

We prove the existence of integral (stable, unstable, center) manifolds of admissible classes for the solutions to the semilinear integral equation u ( t ) = U ( t , s ) u ( s ) + s t U ( t , ξ ) f ( ξ , u ( ξ ) ) d ξ when the evolution family ( U ( t , s ) ) t s has an exponential trichotomy on a half-line or on the whole line, and the nonlinear forcing term f satisfies the (local or global) φ-Lipschitz conditions, i.e., ||f(t,x)-f(t,y)|| ≤ φ(t)||x-y|| where φ(t) belongs to some classes of admissible function spaces. These manifolds are formed by trajectories of the...

Deformations of Metrics and Biharmonic Maps

Aicha Benkartab, Ahmed Mohammed Cherif (2020)

Communications in Mathematics

Similarity:

We construct biharmonic non-harmonic maps between Riemannian manifolds ( M , g ) and ( N , h ) by first making the ansatz that ϕ : ( M , g ) ( N , h ) be a harmonic map and then deforming the metric on N by h ˜ α = α h + ( 1 - α ) d f d f to render ϕ biharmonic, where f is a smooth function with gradient of constant norm on ( N , h ) and α ( 0 , 1 ) . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.

Holonomy groups of flat manifolds with the R property

Rafał Lutowski, Andrzej Szczepański (2013)

Fundamenta Mathematicae

Similarity:

Let M be a flat manifold. We say that M has the R property if the Reidemeister number R(f) is infinite for every homeomorphism f: M → M. We investigate relations between the holonomy representation ρ of M and the R property. When the holonomy group of M is solvable we show that if ρ has a unique ℝ-irreducible subrepresentation of odd degree then M has the R property. This result is related to Conjecture 4.8 in [K. Dekimpe et al., Topol. Methods Nonlinear Anal. 34 (2009)].

The ℤ₂-cohomology cup-length of real flag manifolds

Július Korbaš, Juraj Lörinc (2003)

Fundamenta Mathematicae

Similarity:

Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds O ( n + . . . + n q ) / O ( n ) × . . . × O ( n q ) , q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any O ( n + . . . + n q ) / O ( n ) × . . . × O ( n q ) , q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.

The natural operators T | f T * T r * and T | f Λ ² T * T r *

W. M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let r and n be natural numbers. For n ≥ 2 all natural operators T | f T * T r * transforming vector fields on n-manifolds M to 1-forms on T r * M = J r ( M , ) are classified. For n ≥ 3 all natural operators T | f Λ ² T * T r * transforming vector fields on n-manifolds M to 2-forms on T r * M are completely described.

f -biminimal maps between Riemannian manifolds

Yan Zhao, Ximin Liu (2019)

Czechoslovak Mathematical Journal

Similarity:

We give the definition of f -biminimal submanifolds and derive the equation for f -biminimal submanifolds. As an application, we give some examples of f -biminimal manifolds. Finally, we consider f -minimal hypersurfaces in the product space n × 𝕊 1 ( a ) and derive two rigidity theorems.