The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Représentation des entiers naturels et suites uniformément équiréparties”

Régularité conormale classique des problèmes de Cauchy et de réflexion transverse pour un système 2 × 2 semi-linéaire

B. Nadir, Jean-Pierre Varenne (1990)

Annales de l'institut Fourier

Similarity:

On considère un système semi-linéaire du premier ordre de taille 2 × 2 dans un ouvert de n , une hypersurface S non caractéristique et une hypersurface Γ de S . On suppose que, par Γ , passent deux hypersurfaces caractéristiques Σ 1 , Σ 2 transverses et que les bicaractéristiqiues sur Σ 1 , Σ 2 sont transverses à Γ . Soit u une solution dans une demi-région Ω délimitée par σ . On suppose que u est la restriction à Ω d’une distribution conormale par morceaux par rapport à Σ 1 , Σ 2 . Pour le problème de Cauchy,...

Perturbation singulière en dimension trois : canards en un point pseudo-singulier nœud

Éric Benoît (2001)

Bulletin de la Société Mathématique de France

Similarity:

On étudie les systèmes différentiels singulièrement perturbés de dimension 3 du type { x ˙ = f ( x , y , z , ε ) , y ˙ = g ( x , y , z , ε ) , ε z ˙ = h ( x , y , z , ε ) , f , g , h sont analytiques quelconques. Les travaux antérieurs étudiaient les points réguliers où la surface lente h = 0 est transverse au champ rapide vertical. C’est le domaine d’application du théorème de Tikhonov. Dans d’autres travaux antérieurs, on étudiait les singularités de certains types : plis et fronces de la surface lente, ainsi que certaines singularités plus compliquées,...

Sur l’équation de Monge-Ampère complexe dans la boule de n

Alain Dufresnoy (1989)

Annales de l'institut Fourier

Similarity:

On considère le problème de Dirichlet : ( d d c u ) n = 0 dans B et u | B = ϕ B désigne la boule unité de n . Nous donnons une démonstration simple du fait que si ϕ C 1 , 1 ( B ) , alors u C 1 , 1 ( B ) ; de plus la croissance du coefficient de Lipschitz de la différentielle de u est contrôlée par l’inverse de la distance au bord.

Pseudo-immersions

Henri Joris, Emmanuel Preissmann (1987)

Annales de l'institut Fourier

Similarity:

Si f est un germe 𝒞 de ( R n , 0 ) , on dira que f est une (on notera f Ψ n , m ) si tous les germes continus g de ( R , 0 ) dans ( R m , 0 ) , tels que f g 𝒞 sont eux-mêmes 𝒞 . On détermine complètement Ψ n , 1 , et on montre que Ψ 2 , 2 = Diff 2 . Par ailleurs, si K = R ou C et si g est une application de K dans K telle que g 2 et g 3 sont 𝒞 , alors g est aussi 𝒞 . Si K = H (corps des hamiloniens) alors cette implication n’est plus vraie.

Sur la complexité de familles d’ensembles pseudo-aléatoires

Ramachandran Balasubramanian, Cécile Dartyge, Élie Mosaki (2014)

Annales de l’institut Fourier

Similarity:

Dans cet article, on s’intéresse au problème suivant. Soient p un nombre premier, S 𝔽 p et 𝒫 { P 𝔽 p [ X ] : deg P d } . Quel est le plus grand entier k tel que pour toutes paires de sous-ensembles disjoints 𝒜 , de 𝔽 p vérifiant | 𝒜 | = k , il existe P 𝒫 tel que P ( x ) S si x 𝒜 et P ( x ) S si x   ? Ce problème correspond à l’étude de la complexité de certaines familles d’ensembles pseudo-aléatoires. Dans un premier temps, nous rappelons la définition de cette complexité et resituons le contexte des ensembles pseudo-aléatoires. Ensuite, nous exposons...

Sur une équation de Langmuir généralisée

René Gosse (1949)

Annales de l'institut Fourier

Similarity:

Cet article posthume extrait de notes ou brouillons par E. Cotton concerne, pour les équations de la forme y ' ' + y ' p ( x , y , y ' ) + q ( x ) d a ( y ) d y = f ( y ) , la solution définie par les conditions initiales x = x 0 , y = y 0 , y ' = 0 . Après avoir énoncé des hypothèses concernant les fonctions p , q , a , f , l’auteur montre que toute solution qui passe par un minimum pour x = x 0 , reste supérieure à ce minimum pour x > x 0 et que, dans ces mêmes conditions, | y | et | y ' | restent bornés. Enfin, lorsque p a une borne inférieure positive, y ' tend vers zéro avec...