Displaying similar documents to “Homologie restreinte des p -algèbres de Lie en degré deux”

Cohomologie des algèbres de Lie croisées et K -théorie de Milnor additive

Daniel Guin (1995)

Annales de l'institut Fourier

Similarity:

Dans cet article, nous définissons des modules de (co)-homologie 0 ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) , ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) 𝔊 et 𝔄 sont des algèbres de Lie munies d’une structure supplémentaire (algèbres de Lie croisées), qui satisfont les propriétés usuelles des foncteurs cohomologiques. Si A est une k -algèbre, nous utilisons ces modules d’homologie pour comparer le groupe d’homologie cyclique H C 1 ( A ) avec un analogue additif du groupe de K -théorie de Milnor K 2 Madd ( A ) .

Extensions centrales d'algèbres de Lie

Christian Kassel, Jean-Louis Loday (1982)

Annales de l'institut Fourier

Similarity:

Soient k un anneau commutatif et A une k -algèbre associative quelconque. Nous calculons le groupe d’homologie H 2 ( 𝔰 l n ( A ) , k ) de la k -algèbre de Lie 𝔰 l n ( A ) des matrices de “trace nulle” sur A . Le groupe ainsi déterminé est un groupe d’homologie d’un complexe inspiré d’A. Connes; il est isomorphe à Ω A / k 1 / d A lorsque A est commutative. Nous obtenons également des résultats pour un groupe d’homologie relative associé à une surjection de k -algèbres. Les démonstrations utilisent la classification des extensions centrales...

Troisième théorème fondamental de réalisation de Cartan

Ngô van Quê, A.A.M. Rodrigues (1975)

Annales de l'institut Fourier

Similarity:

De même qu’avec les groupes de Lie, à tout pseudo-groupe infinitésimal de Lie θ sur R n il est associé de façon naturelle une algèbre de Lie L ( θ ) , qui est une sous-algèbre de Lie fermée de l’algèbre de Lie D de tous les champs de vecteurs formels de R n , l’algèbre D étant munie de la topologie définie par la filtration naturelle de l’algèbre des séries formelles. Le troisième théorème fondamental de Cartan dit qu’inversement étant donnée une sous-algèbre de Lie transitive fermée L de l’algèbre...

Sur l'algèbre de Lie des sections d'un fibré en algèbres de Lie

Pierre Lecomte (1980)

Annales de l'institut Fourier

Similarity:

On étudie la structure naturelle d’algèbre de Lie de l’espace des sections de classe C k d’un fibré localement trivial dont la fibre-type est une algèbre de Lie L ; on décrit, en particulier, ses dérivations et ses automorphismes. On détermine les algèbres de Lie L pour lesquelles cette structure caractérise la structure différentiable de la base du fibré.

Rétractes d'un espace

Mohammed El Haouari (1995)

Annales de l'institut Fourier

Similarity:

Notre but dans ce texte est de montrer le résultat suivant : Si X est un C.W. complexe, simplement connexe, de type fini, avec π * ( Ω X ) finiment engendré comme algèbre de Lie, alors, à équivalence d’homotopie rationnelle près, il n’existe qu’un nombre fini de rétractes de X . L’existence d’un nombre fini de rétractes a été obtenue par L. Renner en 1990 dans le cas où H * ( X ; ) est finiment engendré en tant que -algèbre. Notre résultat élargit ainsi le cadre des espaces n’ayant, à équivalence d’homotopie...