On the energy critical focusing non-linear wave equation
Carlos E. Kenig, Frank Merle (2006-2007)
Séminaire Équations aux dérivées partielles
Similarity:
Carlos E. Kenig, Frank Merle (2006-2007)
Séminaire Équations aux dérivées partielles
Similarity:
M. Nakamura, T. Ozawa (1999)
Annales de l'I.H.P. Physique théorique
Similarity:
Igor Rodnianski (2005-2006)
Séminaire Bourbaki
Similarity:
The paper provides a description of the wave map problem with a specific focus on the breakthrough work of T. Tao which showed that a wave map, a dynamic lorentzian analog of a harmonic map, from Minkowski space into a sphere with smooth initial data and a small critical Sobolev norm exists globally in time and remains smooth. When the dimension of the base Minkowski space is , the critical norm coincides with energy, the only manifestly conserved quantity in this (lagrangian) theory....
Pierre Raphaël, Igor Rodnianski (2008-2009)
Séminaire Équations aux dérivées partielles
Similarity:
This note summarizes the results obtained in []. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the target in all homotopy classes and for the equivariant critical Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.
S. Klainerman, Matei Machedon (1997)
Journées équations aux dérivées partielles
Similarity:
J. Ginibre, G. Velo (1989)
Annales de l'I.H.P. Analyse non linéaire
Similarity: