The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Decay estimates for the critical semilinear wave equation”

The wave map problem. Small data critical regularity

Igor Rodnianski (2005-2006)

Séminaire Bourbaki

Similarity:

The paper provides a description of the wave map problem with a specific focus on the breakthrough work of T. Tao which showed that a wave map, a dynamic lorentzian analog of a harmonic map, from Minkowski space into a sphere with smooth initial data and a small critical Sobolev norm exists globally in time and remains smooth. When the dimension of the base Minkowski space is ( 2 + 1 ) , the critical norm coincides with energy, the only manifestly conserved quantity in this (lagrangian) theory....

Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems

Pierre Raphaël, Igor Rodnianski (2008-2009)

Séminaire Équations aux dérivées partielles

Similarity:

This note summarizes the results obtained in []. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the 𝕊 2 target in all homotopy classes and for the equivariant critical S O ( 4 ) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.