Nadreálná čísla
This paper sets out to examine some of Riemann’s papers and notes left by him, in the light of the “philosophical” standpoint expounded in his writings on Naturphilosophie. There is some evidence that many of Riemann’s works, including his Habilitationsvortrag of 1854 on the foundations of geometry, may have sprung from his attempts to find a unified explanation for natural phenomena, on the basis of his model of the ether.
Precession is the secular and long-periodic component of the motion of the Earth’s spin axis in the celestial reference frame, approximately exhibiting a motion of about per year around the pole of the ecliptic. The presently adopted precession model, IAU2006, approximates this motion by polynomial expansions of time that are valid, with very high accuracy, in the immediate vicinity (a few centuries) of the reference epoch J2000.0. For more distant epochs, this approximation however quickly deviates...
Trkovská, D.: Historický vývoj geometrických transformací Sýkorová, I: Matematika ve staré Indii
We consider a contact problem of planar elastic bodies. We adopt Coulomb friction as (an implicitly defined) constitutive law. We will investigate highly simplified lumped parameter models where the contact boundary consists of just one point. In particular, we consider the relevant static and dynamic problems. We are interested in numerical solution of both problems. Even though the static and dynamic problems are qualitatively different, they can be solved by similar piecewise-smooth continuation...
We study a numerical method for the diffusion of an age-structured population in a spatial environment. We extend the method proposed in [2] for linear diffusion problem, to the nonlinear case, where the diffusion coefficients depend on the total population. We integrate separately the age and time variables by finite differences and we discretize the space variable by finite elements. We provide stability and convergence results and we illustrate our approach with some numerical result.
Balancing Domain Decomposition by Constraints (BDDC) belongs to the class of primal substructuring Domain Decomposition (DD) methods. DD methods are iterative methods successfully used in engineering to parallelize solution of large linear systems arising from discretization of second order elliptic problems. Substructuring DD methods represent an important class of DD methods. Their main idea is to divide the underlying domain into nonoverlapping subdomains and solve many relatively small, local...