Displaying 341 – 360 of 407

Showing per page

Corps C-minimaux, en l’honneur de François Lucas

Françoise Delon (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

La classe des constructibles de la géométrie algébrique est close par projection. La théorie des modèles exprime ce fait en disant que les corps algébriquement clos éliminent les quantificateurs dans le langage des anneaux. De façon analogue, les corps algébriquement clos non trivialement valués éliminent les quantificateurs dans le langage des anneaux enrichi de la relation dite de divisibilité v ( x ) v ( y ) . Cela implique en particulier la «  C -minimalité » : une partie définissable d’un corps algébriquement...

Cotorsion-free algebras as endomorphism algebras in L - the discrete and topological cases

Rüdiger E. Göbel, Brendan Goldsmith (1993)

Commentationes Mathematicae Universitatis Carolinae

The discrete algebras A over a commutative ring R which can be realized as the full endomorphism algebra of a torsion-free R -module have been investigated by Dugas and Göbel under the additional set-theoretic axiom of constructibility, V = L . Many interesting results have been obtained for cotorsion-free algebras but the proofs involve rather elaborate calculations in linear algebra. Here these results are rederived in a more natural topological setting and substantial generalizations to topological...

Currently displaying 341 – 360 of 407