Page 1 Next

Displaying 1 – 20 of 105

Showing per page

N-Dimensional Binary Vector Spaces

Kenichi Arai, Hiroyuki Okazaki (2013)

Formalized Mathematics

The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical computer science, for example, coding theory [15] and cryptology. In cryptology, binary fields and n-dimensional...

Nearness relations in linear spaces

Martin Kalina (2004)

Kybernetika

In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms.

Negaciones en la teoría de conjuntos difusos.

Francesc Esteva (1981)

Stochastica

All the negations of PL(X) satisfying the extension principle and the generalized extension principle are fully described through the negation of L. Necessary and sufficient conditions are given for n to be an ortho or u-complementation and for n to satisfy the DeMorgan laws.

Negative universality results for graphs

S.-D. Friedman, K. Thompson (2010)

Fundamenta Mathematicae

It is shown that in many forcing models there is no universal graph at the successors of regular cardinals. The proof, which is similar to the well-known proof for Cohen forcing, is extended to show that it is consistent to have no universal graph at the successor of a singular cardinal, and in particular at ω + 1 . Previously, little was known about universality at the successors of singulars. Analogous results show it is consistent not just that there is no single graph which embeds the rest, but that...

Několik poznámek k mohutnosti množin

Dalibor Martišek (2022)

Učitel matematiky

Text je stručným přehledem nejdůležitějších vlastností nekonečných množin, mimo jiné vyvrací omyl publikovaný v článku Kuřina & Vondrová: Nekonečno, jak to vlastně je,  UM 2003. "Zip Petera Zamarovského" není bijekcí mezi (0;1)x(0;1) a (0;1), ale pouze injekcí, tudíž ekvivalenci množiny všech bodů čtverce a úsečky nedokazuje. V článku je naznačen jiný důkaz.

Currently displaying 1 – 20 of 105

Page 1 Next