Non-axiomatizable classes of V-topological fields.
A model is presented in which the equivalence relation xCy iff L[x]=L[y] of equiconstructibility of reals does not admit a reasonable form of the Glimm-Effros theorem. The model is a kind of iterated Sacks generic extension of the constructible model, but with an “ill“founded “length” of the iteration. In another model of this type, we get an example of a non-Glimm-Effros equivalence relation on reals. As a more elementary application of the technique of “ill“founded Sacks iterations, we obtain...
We present a theorem which generalizes some known theorems on the existence of nonmeasurable (in various senses) sets of the form X+Y. Some additional related questions concerning measure, category and the algebra of Borel sets are also studied.
Let X be a crowded metric space of weight κ that is either -like or locally compact. Let y ∈ βX∖X and assume GCH. Then a space of nonuniform ultrafilters embeds as a closed subspace of (βX∖X)∖y with y as the unique limit point. If, in addition, y is a regular z-ultrafilter, then the space of nonuniform ultrafilters is not normal, and hence (βX∖X)∖y is not normal.
In this work we introduce a nonparametric recursive aggregation process called Multilayer Aggregation (MLA). The name refers to the fact that at each step the results from the previous one are aggregated and thus, before the final result is derived, the initial values are subjected to several layers of aggregation. Most of the conventional aggregation operators, as for instance weighted mean, combine numerical values according to a vector of weights (parameters). Alternatively, the MLA operators...
We prove a stronger form, , of a consistency result, , due to Eklof and Shelah. concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that does not hold for left perfect rings.
We explore the possibility of forcing nonreflecting stationary sets of . We also present a generalization of Kanamori’s weakly normal filters, which induces stationary reflection.