Dénombrements systématiques de relations binaires externes
We show that the standard normalization-by-evaluation construction for the simply-typed -calculus has a natural counterpart for the untyped -calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms,...
We show that the standard normalization-by-evaluation construction for the simply-typed λβη-calculus has a natural counterpart for the untyped λβ-calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal...
We investigate the relative consistency and independence of statements which imply the existence of various kinds of dense orders, including dense linear orders. We study as well the relationship between these statements and others involving partition properties. Since we work in ZF (i.e. without the Axiom of Choice), we also analyze the role that some weaker forms of AC play in this context
The structure of definable sets and maps in dense elementary pairs of o-minimal expansions of ordered abelian groups is described. It turns out that a certain notion of "small definable set" plays a special role in this description.
Une partie de est appelée une classe de Vapnik-Cervonenkis si la croissance de la fonction est polynomiale; ces classes se trouvent être utiles en Statistique et en Calcul des Probabilités (voir par exemple Vapnik, Cervonenkis [V.N. Vapnik, A.YA. Cervonenkis, Theor. Prob. Appl., 16 (1971), 264-280], Dudley [R.M. Dudley, Ann. of Prob., 6 (1978), 899-929]).Le présent travail est un essai de synthèse sur les classes de Vapnik-Cervonenkis. Mais il contient aussi beaucoup de résultats nouveaux,...
Using the general hypergraph technique developed in [7], we first give a much simpler proof of Shultz's theorem [10]: Each compact convex set is affinely homeomorphic to the state space of an orthomodular lattice. We also present partial solutions to open questions formulated in [10] - we show that not every compact convex set has to be a state space of a unital orthomodular lattice and that for unital orthomodular lattices the state space characterization can be obtained in the context of unital...
We prove that density preserving homeomorphisms form a Π11-complete subset in the Polish space ℍ of all increasing autohomeomorphisms of unit interval.
We study the descriptive set theoretical complexity of various randomness notions.