Page 1

Displaying 1 – 3 of 3

Showing per page

Fixpoint alternation: arithmetic, transition systems, and the binary tree

J. C. Bradfield (2010)

RAIRO - Theoretical Informatics and Applications

We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.

Function operators spanning the arithmetical and the polynomial hierarchy

Armin Hemmerling (2010)

RAIRO - Theoretical Informatics and Applications

A modified version of the classical µ-operator as well as the first value operator and the operator of inverting unary functions, applied in combination with the composition of functions and starting from the primitive recursive functions, generate all arithmetically representable functions. Moreover, the nesting levels of these operators are closely related to the stratification of the arithmetical hierarchy. The same is shown for some further function operators known from computability and complexity theory....

Currently displaying 1 – 3 of 3

Page 1