Über Darstellungen der elementaren Funktionen II.
Our purpose is to introduce the W-composition, W-minimalization and W-primitive recursion operations as operations between W-valued functions, where W denotes the ordered semiring ([0,1],+,≤). We prove that: 1) the set of W-calculable functions is closed under the W-composition and W-primitice recursion operations, and 2) the set of the partially W-calculable functions is closed under the W-minimalization operation.
The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ωPCP is undecidable for domain alphabets...
The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231–245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO–Theor. Inf. Appl. 40 (2006) 551–557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju’s construction. So we prove that ωPCP is undecidable for domain alphabets...
In the infinite Post Correspondence Problem an instance (h,g) consists of two morphisms h and g, and the problem is to determine whether or not there exists an infinite word ω such that h(ω) = g(ω). This problem was shown to be undecidable by Ruohonen (1985) in general. Recently Blondel and Canterini (Theory Comput. Syst.36 (2003) 231–245) showed that this problem is undecidable for domain alphabets of size 105. Here we give a proof that the infinite Post Correspondence Problem is undecidable...
We prove that for every countable ordinal one cannot decide whether a given infinitary rational relation is in the Borel class (respectively ). Furthermore one cannot decide whether a given infinitary rational relation is a Borel set or a -complete set. We prove some recursive analogues to these properties. In particular one cannot decide whether an infinitary rational relation is an arithmetical set. We then deduce from the proof of these results some other ones, like: one cannot decide whether...
We prove that for every countable ordinal α one cannot decide whether a given infinitary rational relation is in the Borel class (respectively ). Furthermore one cannot decide whether a given infinitary rational relation is a Borel set or a -complete set. We prove some recursive analogues to these properties. In particular one cannot decide whether an infinitary rational relation is an arithmetical set. We then deduce from the proof of these results some other ones, like: one cannot decide...