The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set
We prove that the ideal (a) defined by the density topology is not generated. This answers a question of Z. Grande and E. Strońska.
An ω-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω-tree-automatic structures. We prove first that the isomorphism relation for ω-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n ≥ 2) is not determined by the axiomatic system ZFC. Then we prove that...
The isomorphism relation on countable torsion free abelian groups is non-Borel.
∗ Supported by D.G.I.C.Y.T. Project No. PB93-1142Let X be a separable Banach space without the Point of Continuity Property. When the set of closed subsets of its closed unit ball is equipped with the standard Effros-Borel structure, the set of those which have the Point of Continuity Property is non-Borel. We also prove that, for any separable Banach space X, the oscillation rank of the identity on X (an ordinal index which quantifies the Point of Continuity Property) is determined by the subspaces...
We show that for some large classes of topological spaces X and any metric space (Z,d), the point of continuity property of any function f: X → (Z,d) is equivalent to the following condition: (*) For every ε > 0, there is a neighbourhood assignment of X such that d(f(x),f(y)) < ε whenever . We also give various descriptions of the filters ℱ on the integers ℕ for which (*) is satisfied by the ℱ-limit of any sequence of continuous functions from a topological space into a metric space.
We prove that the σ-ideal I(E) (of closed smooth sets with respect to a non-smooth Borel equivalence relation E) does not have the covering property. In fact, the same holds for any σ-ideal containing the closed transversals with respect to an equivalence relation generated by a countable group of homeomorphisms. As a consequence we show that I(E) does not have a Borel basis.
We formulate variants of the cardinals f, p and t in terms of families of measurable functions, in order to examine the effect upon these cardinals of adding one random real.
A. Miller proved the consistent existence of a coanalytic two-point set, Hamel basis and MAD family. In these cases the classical transfinite induction can be modified to produce a coanalytic set. We generalize his result formulating a condition which can be easily applied in such situations. We reprove the classical results and as a new application we show that consistently there exists an uncountable coanalytic subset of the plane that intersects every C¹ curve in a countable set.
We present the effective version of the theorem about turning Borel sets in Polish spaces into clopen sets while preserving the Borel structure of the underlying space. We show that under some conditions the emerging parameters can be chosen in a hyperarithmetical way and using this we obtain some uniformity results.
We prove: Theorem 1. Let κ be an uncountable cardinal. Every κ-Suslin graph G on reals satisfies one of the following two requirements: (I) G admits a κ-Borel colouring by ordinals below κ; (II) there exists a continuous homomorphism (in some cases an embedding) of a certain locally countable Borel graph into G. Theorem 2. In the Solovay model, every OD graph G on reals satisfies one of the following two requirements: (I) G admits an OD colouring by countable ordinals; (II) as above.
A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some -ideal, being (completely) nonmeasurable with respect to different -ideals, being a -covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations...