Displaying 501 – 520 of 2138

Showing per page

Convex ( L , M ) -fuzzy remote neighborhood operators

Hu Zhao, Li-Yan Jia, Gui-Xiu Chen (2024)

Kybernetika

In this paper, two kinds of remote neighborhood operators in ( L , M ) -fuzzy convex spaces are proposed, which are called convex ( L , M ) -fuzzy remote neighborhood operators. It is proved that these two kinds of convex ( L , M ) -fuzzy remote neighborhood operators can be used to characterize ( L , M ) -fuzzy convex structures. In addition, the lattice structures of two kinds of convex ( L , M ) -fuzzy remote neighborhood operators are also given.

Convexity ranks in higher dimensions

Menachem Kojman (2000)

Fundamenta Mathematicae

A subset of a vector space is called countably convex if it is a countable union of convex sets. Classification of countably convex subsets of topological vector spaces is addressed in this paper. An ordinal-valued rank function ϱ is introduced to measure the complexity of local nonconvexity points in subsets of topological vector spaces. Then ϱ is used to give a necessary and sufficient condition for countable convexity of closed sets. Theorem. Suppose that S is a closed subset of a Polish linear...

Coordinatewise decomposition, Borel cohomology, and invariant measures

Benjamin D. Miller (2006)

Fundamenta Mathematicae

Given Polish spaces X and Y and a Borel set S ⊆ X × Y with countable sections, we describe the circumstances under which a Borel function f: S → ℝ is of the form f(x,y) = u(x) + v(y), where u: X → ℝ and v: Y → ℝ are Borel. This turns out to be a special case of the problem of determining whether a real-valued Borel cocycle on a countable Borel equivalence relation is a coboundary. We use several Glimm-Effros style dichotomies to give a solution to this problem in terms of certain σ-finite measures...

Coordinatewise decomposition of group-valued Borel functions

Benjamin D. Miller (2007)

Fundamenta Mathematicae

Answering a question of Kłopotowski, Nadkarni, Sarbadhikari, and Srivastava, we characterize the Borel sets S ⊆ X × Y with the property that every Borel function f: S → ℂ is of the form f(x,y) = u(x) + v(y), where u: X → ℂ and v: Y → ℂ are Borel.

Cotorsion-free algebras as endomorphism algebras in L - the discrete and topological cases

Rüdiger E. Göbel, Brendan Goldsmith (1993)

Commentationes Mathematicae Universitatis Carolinae

The discrete algebras A over a commutative ring R which can be realized as the full endomorphism algebra of a torsion-free R -module have been investigated by Dugas and Göbel under the additional set-theoretic axiom of constructibility, V = L . Many interesting results have been obtained for cotorsion-free algebras but the proofs involve rather elaborate calculations in linear algebra. Here these results are rederived in a more natural topological setting and substantial generalizations to topological...

Countable Compact Scattered T₂ Spaces and Weak Forms of AC

Kyriakos Keremedis, Evangelos Felouzis, Eleftherios Tachtsis (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that: (1) It is provable in ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) that every compact scattered T₂ topological space is zero-dimensional. (2) If every countable union of countable sets of reals is countable, then a countable compact T₂ space is scattered iff it is metrizable. (3) If the real line ℝ can be expressed as a well-ordered union of well-orderable sets, then every countable compact zero-dimensional T₂ space...

Countable dense homogeneity and λ-sets

Rodrigo Hernández-Gutiérrez, Michael Hrušák, Jan van Mill (2014)

Fundamenta Mathematicae

We show that all sufficiently nice λ-sets are countable dense homogeneous (𝖢𝖣𝖧). From this fact we conclude that for every uncountable cardinal κ ≤ 𝔟 there is a countable dense homogeneous metric space of size κ. Moreover, the existence of a meager in itself countable dense homogeneous metric space of size κ is equivalent to the existence of a λ-set of size κ. On the other hand, it is consistent with the continuum arbitrarily large that every 𝖢𝖣𝖧 metric space has size either ω₁ or 𝔠. An...

Countable partitions of the sets of points and lines

James Schmerl (1999)

Fundamenta Mathematicae

The following theorem is proved, answering a question raised by Davies in 1963. If L 0 L 1 L 2 . . . is a partition of the set of lines of n , then there is a partition n = S 0 S 1 S 2 . . . such that | S i | 2 whenever L i . There are generalizations to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson Mauldin.

Countable splitting graphs

Nick Haverkamp (2011)

Fundamenta Mathematicae

A graph is called splitting if there is a 0-1 labelling of its vertices such that for every infinite set C of natural numbers there is a sequence of labels along a 1-way infinite path in the graph whose restriction to C is not eventually constant. We characterize the countable splitting graphs as those containing a subgraph of one of three simple types.

Countable sums and products of Loeb and selective metric spaces

Horst Herrlich, Kyriakos Keremedis, Eleftherios Tachtsis (2005)

Commentationes Mathematicae Universitatis Carolinae

We investigate the role that weak forms of the axiom of choice play in countable Tychonoff products, as well as countable disjoint unions, of Loeb and selective metric spaces.

Currently displaying 501 – 520 of 2138