Displaying 41 – 60 of 67

Showing per page

Evaluations of fuzzy sets based on orderings and measures.

Aldo Ventre, Siegfried Weber (1987)

Stochastica

Total orderings in the range of fuzzy sets can serve as choice criteria for fuzzy sets, a wide class of orderings based on functions is proposed (section 2). Decomposable measures are taken to measure the items on which the fuzzy sets are given (section 3). Combining the two levels of measurement by means of the integral introduced by the second author we obtain evaluations of fuzzy sets as functionals with appropriate properties, the concepts of energy and fuzziness are included (section 4).

Every Lusin set is undetermined in the point-open game

Ireneusz Recław (1994)

Fundamenta Mathematicae

We show that some classes of small sets are topological versions of some combinatorial properties. We also give a characterization of spaces for which White has a winning strategy in the point-open game. We show that every Lusin set is undetermined, which solves a problem of Galvin.

Evolutionary algorithms and fuzzy sets for discovering temporal rules

Stephen G. Matthews, Mario A. Gongora, Adrian A. Hopgood (2013)

International Journal of Applied Mathematics and Computer Science

A novel method is presented for mining fuzzy association rules that have a temporal pattern. Our proposed method contributes towards discovering temporal patterns that could otherwise be lost from defining the membership functions before the mining process. The novelty of this research lies in exploring the composition of fuzzy and temporal association rules, and using a multi-objective evolutionary algorithm combined with iterative rule learning to mine many rules. Temporal patterns are augmented...

Examples for Souslin forcing

Haim Judah, Andrzej Rosłanowski, Saharon Shelah (1994)

Fundamenta Mathematicae

We give several examples of Souslin forcing notions. For instance, we show that there exists a proper analytical forcing notion without ccc and with no perfect set of incompatible elements, we give an example of a Souslin ccc partial order without the Knaster property, and an example of a totally nonhomogeneous Souslin forcing notion.

Examples of non-shy sets

Randall Dougherty (1994)

Fundamenta Mathematicae

Christensen has defined a generalization of the property of being of Haar measure zero to subsets of (abelian) Polish groups which need not be locally compact; a recent paper of Hunt, Sauer, and Yorke defines the same property for Borel subsets of linear spaces, and gives a number of examples and applications. The latter authors use the term “shyness” for this property, and “prevalence” for the complementary property. In the present paper, we construct a number of examples of non-shy Borel sets...

Examples of ε-exhaustive pathological submeasures

Ilijas Farah (2004)

Fundamenta Mathematicae

For any given ε > 0 we construct an ε-exhaustive normalized pathological submeasure. To this end we use potentially exhaustive submeasures and barriers of finite subsets of ℕ.

Exponential entropy on intuitionistic fuzzy sets

Rajkumar Verma, Bhu Dev Sharma (2013)

Kybernetika

In the present paper, based on the concept of fuzzy entropy, an exponential intuitionistic fuzzy entropy measure is proposed in the setting of Atanassov's intuitionistic fuzzy set theory. This measure is a generalized version of exponential fuzzy entropy proposed by Pal and Pal. A connection between exponential fuzzy entropy and exponential intuitionistic fuzzy entropy is also established. Some interesting properties of this measure are analyzed. Finally, a numerical example is given to show that...

Extending real-valued functions in βκ

Alan Dow (1997)

Fundamenta Mathematicae

An Open Coloring Axiom type principle is formulated for uncountable cardinals and is shown to be a consequence of the Proper Forcing Axiom. Several applications are found. We also study dense C*-embedded subspaces of ω*, showing that there can be such sets of cardinality c and that it is consistent that ω*{pis C*-embedded for some but not all p ∈ ω*.

Extensión de medidas difusas usando la esperanza monótona.

Manuel Jorge Bolaños Carmona, María Teresa Lamata Jiménez, Serafín Moral Callejón (1987)

Stochastica

The monotone expectation is defined as a functional over fuzzy measures on finite sets. The functional is based on Choquet functional over capacities and its more relevant properties are proved, including the generalization of classical mathematical expectation and Dempster's upper and lower expectations of an evidence. In second place, the monotone expectation is used to define measures of fuzzy sets. Such measures are compared with the ones based on Sugeno integral. Finally, we prove a generalization...

Extension of functions with small oscillation

Denny H. Leung, Wee-Kee Tang (2006)

Fundamenta Mathematicae

A classical theorem of Kuratowski says that every Baire one function on a G δ subspace of a Polish (= separable completely metrizable) space X can be extended to a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one functions into small Baire classes. A Baire one function f is assigned into a class in this hierarchy depending on its oscillation index β(f). We prove a refinement of Kuratowski’s theorem: if Y is a subspace of a metric space X and f is a real-valued...

Currently displaying 41 – 60 of 67